Nitride based nanostructured novel thermoelectric thin film materials
My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PRE2020-093511
INGENIERIA DE LAS PROPIEDADES TERMOELECTRICAS Y DE ESPIN DE...
99K€
Cerrado
MAT2013-46505-C3-1-R
TEXTURA EN LA NANOESCALA: HACIA MATERIALES TERMOELECTRICOS M...
61K€
Cerrado
MAT2012-34655
OXIDOS TERMOELECTRICOS NANOESTRUCTURADOS: BUSQUEDA DE MATERI...
41K€
Cerrado
MAT2010-20798-C05-04
ARREGLOS ORDENADOS DE NANOHILOS Y ANTIDOTS: EFECTOS MAGNETOC...
91K€
Cerrado
MAT2015-63955-R
NANOESTRUCTURAS SEMICONDUCTORAS Y NANOCOMPOSITES PARA LA REC...
121K€
Cerrado
CARMEN
Approaching the maximum thermoelectric figure of merit of 2D...
212K€
Cerrado
Información proyecto NINA
Líder del proyecto
Linköping University
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.