Approaching the maximum thermoelectric figure of merit of 2D materials by nanoen...
Nanoengineering techniques have been developed to reduce thermal conductivity (κ) and improve the thermoelectric figure of merit (ZT) of materials. However, both these strategies have had their own limitations. Firstly, due to the...
Nanoengineering techniques have been developed to reduce thermal conductivity (κ) and improve the thermoelectric figure of merit (ZT) of materials. However, both these strategies have had their own limitations. Firstly, due to the nanopatterns only reducing the κ in a single direction, is difficult to reduce the total κ of thermal isotropic materials. Secondly, when nanoengineering the material to increase ZT by lowering its κ, the nanopatterned sample with large porosity (> 0.5) can greatly remove its volume and suppress the electron mean free path, which would also significantly reduce the electrical conductivity (σ) and resulted in a low increase of the ZT value. CARMEN will overcome these limitations by taking two advantages of emerging two-dimensional (2D) materials, especially SnSe2: a high Seebeck coefficient of 500 μV/K at 298 K and a high anisotropic κ ratio of ~ 8.4. Therefore, nanoengineering 2D materials can reduce their κ to approach the maximum value of ZT with a limited reduction in σ. Additionally, the phonon drag of SnSe2 was first revealed by the applicant during a three-month research visit in the supervisor's group, which will be further investigated by CARMEN. To understand and exploit the thermoelectric properties of 2D materials, CARMEN will design, construct, measure, and explore nanopatterned SnSe2 to approach its maximum thermoelectric ZT value above room temperature and to manipulate the phonon drag in SnSe2 at low temperatures (1 - 273 K). The project is motivated in part by the urgent need for highly thermoelectric ZT materials to harvest waste heat from electronics, and in part by the fundamental quest toward understanding and manipulating the phonon-electron interaction in 2D materials. It represents an extraordinary training opportunity on complementary scientific and soft skills for the applicant and has transformational impact potential on flexible thermoelectric devices, thermal engineering, quantum technologies, and beyond.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.