Innovating Works

nanoDNArepair

Financiado
Next Generation Nanofluidic Devices for Single Molecule Analysis of DNA Repair D...
DNA-protein interactions are at the core of the function of every human cell. Single DNA molecule methods have revolutionized our understanding of such interactions. A vast majority of these methods are based on attaching the DNA,... DNA-protein interactions are at the core of the function of every human cell. Single DNA molecule methods have revolutionized our understanding of such interactions. A vast majority of these methods are based on attaching the DNA, at one or both ends, to a bead or a surface. This gives ultimate control of the positioning of the DNA molecules and forces that can be applied to them but makes it difficult to investigate interactions with DNA ends, especially when more than one single DNA molecule is involved. Such interactions are however of fundamental importance, not the least in the repair of DNA double-strand breaks (DSBs), the most serious damage to our genetic material. In nanoDNArepair I will develop and use a method that allows analysis of DNA-protein interactions on large, single DNA molecules for DNA freely suspended in solution. The method is based on entropically trapping and stretching genomic length DNA molecules in nanofluidic channels and using an orthogonal nanoslit to expose the trapped DNA to proteins of interest. In contrast to all existing nanofluidic devices, the novel device allows active addition (or removal) of proteins to (from) the confined DNA and positioning of two or more DNA molecules in close proximity. We will use the device to study the main repair machinery for DSBs, non-homologous end-joining (NHEJ). In NHEJ a machinery of proteins finds the broken ends, protects them, holds them close and ligate the break. These steps are difficult to study with traditional single DNA molecule techniques, but perfectly suited for the nanofluidic device. The single molecule analysis can reveal stoichiometry, kinetics and dynamics of these processes, as well as identify important sub-populations, which is crucial for understanding the process. The outcome of the project will, in addition to the device, be improved understanding of genetic diseases, including cancer and strategies for development of novel drugs. ver más
31/03/2025
2M€
Perfil tecnológico estimado
Duración del proyecto: 63 meses Fecha Inicio: 2019-12-19
Fecha Fin: 2025-03-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-12-19
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
CHALMERS TEKNISKA HOGSKOLA AB No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5