Neuronal circuitry and plasticity of the spinal cord using in vivo electrophysio...
Neuronal circuitry and plasticity of the spinal cord using in vivo electrophysiology in transgenic mice
The development of transgenic mice affecting development of spinal cord circuitry or mimicking hereditary neurological motor disorders has necessitated the development of in-vivo adult mouse preparations for electrophysiology to b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CRASCI
Spatial temporal characteristics of Cortical Reorganization...
170K€
Cerrado
CIRCUITASSEMBLY
Development of functional organization of the visual circuit...
2M€
Cerrado
BES-2014-068362
MECANISMOS MOLECULARES RESPONSABLES DE LA PLASTICIDAD SINAPT...
88K€
Cerrado
BFU2008-00899
MECANISMOS SINAPTICOS QUE SUBYACEN AL APRENDIZAJE Y LA MEMOR...
484K€
Cerrado
BES-2015-071959
GENERACION DE NUEVOS RATONES TRANSGENICOS Y SU APLICABILIDAD...
93K€
Cerrado
Información proyecto MICE SPINAL CORD CM
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
204K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The development of transgenic mice affecting development of spinal cord circuitry or mimicking hereditary neurological motor disorders has necessitated the development of in-vivo adult mouse preparations for electrophysiology to bridge molecular biology with the pathophysiology of phenotypes. The first goal is the development and refinement of a mouse in-vivo spinal cord preparation for intracellular recordings and analysis of spinal circuitry in acute experiments and a preparation for chronic recording of EMG and kinematics. These will be used to identify specific patterns of inputs to motoneurones in the mouse including the Ia monosynaptic EPSP, presynaptic inhibition, reciprocal inhibition, recurrent inhibition, propioceptive and exteroceptive polysynaptic inputs as well as the intrinsic properties of motoneurones. The data will not only characterise synaptic connectively in the mouse which can be compared to other species but will serve as control data for the rest of the project. The second goal is the use of the preparations to study transgenic mice with specific manipulations affecting the development of spinal neuronal circuitry. 2 mice mutants developed by Thomas Jessell (New York) and Silvia Arber (Basel) will be used. In the Er81 mutant mouse lack of a transcription factor causes Ia propioceptive afferents to terminate prematurely in the intermediate spinal cord. The second mutant model lacks the presynaptic GABAergic terminals on Ia afferent inputs to motoneurones. The researcher will investigate the plasticity occurring as a consequence. The third goal is to use the preparations to study transgenic mice with genetic mutations similar to those underlying neurological disorders in humans. For this the researcher will investigate plasticity in mice with a mutation affecting the glycine receptor, mimicking hyperekplexia in humans. SOD-1 mutants, models of ALS will also be used to investigate excitability changes at central part of motoneurone