NEoC – NeuroEnergetics-on-Chip: Disease modeling of impaired brain glucose metab...
NEoC – NeuroEnergetics-on-Chip: Disease modeling of impaired brain glucose metabolism using human iPSC-derived neurovascular units (NVU)-on-chip systems
Neurological conditions conquer the world; they are the leading cause of disability and second leading cause of death worldwide. Although there is growing evidence for the immense impact of disturbances in neurometabolism for over...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NEoC
Duración del proyecto: 25 meses
Fecha Inicio: 2023-06-27
Fecha Fin: 2025-07-31
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Neurological conditions conquer the world; they are the leading cause of disability and second leading cause of death worldwide. Although there is growing evidence for the immense impact of disturbances in neurometabolism for overall brain function, only little is known about the underlying mechanisms (knowledge gap). Especially human insights are sparse due to a paucity of physiologically relevant model systems (research gap).
To address these challenges, within the scope of the NeuroEnergetics-on-Chip (NEoC) project, I am proposing the development of a novel, human iPSC-based organ-on-chip model of the neurovascular unit (NVU) that integrates all neurometabolically active NVU cell types and specifically enables the inspection of neurometabolic coupling mechanisms. To categorically cast light onto the mechanisms behind impaired metabolism of glucose, the brain’s principal energy supplier, I will build an NVU-on-Chip disease model of glucose transporter 1 deficiency syndrome (GLUT1-DS). Since GLUT1-DS is monogenic, it presents an excellent paradigm to study cellular and molecular consequences of disturbed neuroenergetics, even beyond the disease itself.
For implementation of the NEoC project, I will i) generate all neurometabolically relevant NVU cell types (endothelial cells, perivascular cells, astrocytes, microglia and neurons) from human iPSC lines derived from GLUT1-DS patients, ii) develop a novel NVU microfluidic platform addressing the shortcomings of existing NVU-on-Chip systems, and iii) build GLUT1-DS-NVU-on-Chip models to specifically study perturbations in energy metabolism, blood-brain barrier integrity and neuroinflammation as a consequence of GLUT1-DS in vitro.
The NEoC project will provide novel knowledge on the underlying mechanisms and pathophysiology of GLUT1-DS, and thereby not only benefit those afflicted by the orphan disease but impact our understanding of a variety of other CNS and metabolically linked disorders.