Innovating Works

BrainCircuit-on-chip

Financiado
Microfluidic chambers for establishing physiological and pathological human iPSC...
Microfluidic chambers for establishing physiological and pathological human iPSC derived neuronal circuits In vitro cultures of brain cells generate an ease and accessible ensemble of neurons In vitro cultures of brain cells generate an ease and accessible ensemble of neurons which has been invaluable for innumerable cellular and molec... In vitro cultures of brain cells generate an ease and accessible ensemble of neurons In vitro cultures of brain cells generate an ease and accessible ensemble of neurons which has been invaluable for innumerable cellular and molecular studies. However, brain tissue dissociation and neuronal plating in vitro causes a complete loss of the original connections present into the brain tissue. Therefore, in vitro neuronal cultures do not allow to model specific neuronal circuits and study their specific properties. The same limitation is valid for human stem cell-derived neuronal cell cultures. In fact, several neuronal cell types can be differentiated from human iPS cells (iPSCs), but without any organization in terms of connectivity or synaptic specificity. We have established a microfluidic platform, named BrainCircuit-on-chip, which allows to growth human iPSC-derived neurons with a stereotyped organization and to establish patterned connections between different neuronal cell types. These microchips contain a central chamber where synapses between the two neuronal cell types are generated establishing the correct functional integration between the two neuronal populations. PDMS-microfluidic chambers are transparent and enables high-power and time-lapse imaging in the different neuronal compartments for sub-cellular and molecular studies. Moreover, the design of the central chamber enables to expose the synapses to chemicals or other cells types like astrocytes or microglia to study their effects on a specific class of synapses. We will produce a convenient kit with the frozen human neurons, the microfluidic chamber and a detailed protocol for generating the patterned neuronal circuits for research studies, compound testing and toxicology research. ver más
31/01/2021
OSR
150K€
Duración del proyecto: 18 meses Fecha Inicio: 2019-07-02
Fecha Fin: 2021-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-01-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 150K€
Líder del proyecto
OSPEDALE SAN RAFFAELE SRL No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5