My goal is to optically detect the magnetic resonance of free radicals/ROS inside cells. Radicals are suspected to play a crucial role in numerous pathogenic conditions including diseases responsible for most deaths worldwide (as...
My goal is to optically detect the magnetic resonance of free radicals/ROS inside cells. Radicals are suspected to play a crucial role in numerous pathogenic conditions including diseases responsible for most deaths worldwide (as arteriosclerosis, cancer, immune responses to pathogens). They are also involved in many processes in healthy cells as mitochondrial metabolism or aging of cells and part of the working mechanism of many drugs. Despite their relevance relatively little is known about where and when radicals are built, how they work or which ones play a role. Their short lifetime and reactivity poses a problem for many state of the art methods. Thus they are often a bottleneck in understanding stress responses. My goal is to develop a method, which can detect their magnetic resonance in the nanoscale. The method is based on a fluorescent defect in diamond, which changes its optical properties based on its magnetic surrounding. While this technique has been able to detect even the faint signal of a single electron spin, this technique is entirely new to biological fields. We can localize where, when and how much of a certain radical is generated with nm resolution. This is impossible with the current state of the art. Furthermore, since we obtain spectra we can also differentiate radicals to some extent. I am proposing to investigate two systems: 1) the involvement of radicals in the aging of yeast cells 2) the response of macrophages to stress. In the first project I will test the so-called free radical theory, which states that organisms age because cells accumulate free radical damage over time. In the second project I will answer the question how a macrophage reacts to the impact of a pathogen or a drug. Outcomes of this project would enable us to increase our understanding on how stress responses work on a molecular level. This will open up new possibilities to assess if and how drugs are working or how and why certain pathogens are worse than others.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.