Multicomponent Supramolecular Structures as Artificial Enzyme Mimics
Supramolecular polymers (SPs) are at the forefront of current research to functional bio-mimetic materials and systems. Among the plethora of SPs appeared in the literature in the last decades, those based on 1,3,5-benzenetricarbo...
Supramolecular polymers (SPs) are at the forefront of current research to functional bio-mimetic materials and systems. Among the plethora of SPs appeared in the literature in the last decades, those based on 1,3,5-benzenetricarboxyamide (BTA), which have shown to form double helical fibres both in organic and aqueous solution, have been employed as a robust platform for the design of bio-inspired materials with tailored and tuneable properties. Indeed, non-covalent synthesis allows to easily obtain a wide range of functional SPs by simply mixing chemically distinct monomers in solution, which will spontaneously self-assemble into dynamic structures. Such approach has been exploited to develop BTA-based SPs able to bind nucleic acids in a superselective fashion through multivalent interactions between positively charged co-assembled BTA monomers and the phosphate present in the oligonucleotide backbone. Building on these previous findings, MuST ArtEM aims to develop functional SPs to be exploited as artificial nucleases, able to recognize and cleave RNA. The recognition and the hydrolytic activity are provided by cationic components bearing the 1,4,7-triazacyclononane-zinc complexes (TACN-Zn2+), which is well known to catalyse the hydrolysis of phosphodiester bonds. The positively charged components undergo clustered upon binding with the oligonucleotide, thus enhancing the hydrolytic ability of the zinc complex through cooperative catalysis. Once degraded, the RNA is no more able to induce clustering of the functional monomers, which will come back to the initial random distribution, switching off the catalytic ability of the fibres. Such functional SPs will be then tested in more complex systems, to trigger downstream self-assembly of DNA structures. Finally, liquid-liquid phase separation of the functional SPs will be achieved, developing bio-inspired compartmentalized hydrolytic microreactors.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.