Identifying how Evolution exploits physical properties of tissues to generate th...
Identifying how Evolution exploits physical properties of tissues to generate the complexity and diversity of Life
My project focuses on answering one fundamental question: what are the drivers of Life’s morphological complexity and diversity? I claim that this question can only be addressed by a Newtonian-Darwinian synthesis that considers ho...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2014-57686-P
ESTRATEGIAS ADAPTATIVAS EN POBLACIONES VIRALES. HACIA LA IDE...
175K€
Cerrado
AbioEvo
Conditions for the emergence of evolution during abiogenesis
2M€
Cerrado
FIS2015-67616-P
HACIA UNA FISICA DE LAS GRANDES TRANSICIONES EVOLUTIVAS
83K€
Cerrado
FIS2008-05273
EVOLUCION Y ORGANIZACION DE POBLACIONES HETEROGENEAS Y SU RE...
70K€
Cerrado
KaryodynEVO
Evolutionary principles of nuclear dynamics and remodelling
2M€
Cerrado
Duración del proyecto: 74 meses
Fecha Inicio: 2019-05-08
Fecha Fin: 2025-07-31
Líder del proyecto
UNIVERSITE DE GENEVE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
My project focuses on answering one fundamental question: what are the drivers of Life’s morphological complexity and diversity? I claim that this question can only be addressed by a Newtonian-Darwinian synthesis that considers how Evolution exploits the physical properties of living matter. I will investigate how the evolutionary process explores the phase space of possible interactions between physical (mechanics, reaction-diffusion) and biological (cell signalling, proliferation, migration) processes and generates configurations that compute functional phenotypes. In particular, I will combine experiments in biology and physics, as well as mathematical models and Artificial-Life (ALife) numerical simulations. The latter will be based on physics’ first principles, symmetry-breaking processes and a genetic algorithm. First, I will investigate how geometry affects signalling by (i) imaging the embryonic development of colour patterns and skin geometries of multiple squamate species with various scale-to-colour pattern correspondences, (ii) generating CRISPR/Cas9 scaleless mutants in two lizard species to study the effect of skin 3D geometry on colour patterning, and (iii) performing ALife experiments to explore how the evolutionary process can modify signalling events and exploit geometry to generate new patterns. Second, I will analyse how growth can affect geometry by (i) performing in-silico experiments where coupling between growth and morphogenesis is systematically explored and (ii) evaluating how much the in-silico model captures morphologies generated with physics laboratory experiments using 3D layered polymeric gels. Third, I will build a Newtonian-Darwinian framework by coupling geometry, signalling, growth and mechanics in extensive open-ended ALife experiments. The results of the EVOMORPHYS project will constitute a novel framework for understanding how Evolution exploits physics to generate the morphological diversity and complexity of Life forms.