Descripción del proyecto
Abiogenesis, the transition from non-living to living matter, is at the core of the origin of life question. However, the dynamical processes underlying abiogenesis remain unknown.
The AbioEvo project aims to test the hypothesis that RNA-catalysed RNA recombination, if coupled with template-based mechanisms, provides a gradual route for the emergence of evolution by natural selection, starting from collective autocatalysis, toward template-based replication. Indeed, recombination allows both self-reproduction and shuffling of other sequences, thus, once combined with templating, provides the basic ingredients of reproduction, heredity and variation required for Darwinian evolution.
The project decomposes the problem into five steps: (WP1) the study of molecular-level mechanisms to generate and stabilize novel sequences by recombination and templating; (WP2) collective dynamics integrating these mechanisms into the properties of reproduction with heredity, variation, and selection, in order to establish proof-of-concepts of evolutionary modes; (WP3) viability thresholds of recombination-based replicators from increasingly random substrates; (WP4) conditions for open-ended evolution toward template-based replication; (WP5) experimentally informed theoretical estimates of the probability of the proposed evolutionary transitions.
The project would provide first demonstrations of evolution by natural selection in a purely chemical system, gradual and experimentally accessible paths from oligomers to template-based replication, and a method to evaluate prebiotic plausibility from sequence-to-function relationships, kinetics and evolutionary dynamics.