In utero development is critical for normal skeletal and cardiac muscle function throughout life. Many diseases, such as distal arthrogryposis (affecting 1/3000 live births) and clubfoot (1/1000) in skeletal muscle and arrhythmia...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FLIGHT MUSCLE
Mechanistic dissection of myofibrillogenesis and sarcomeroge...
1M€
Cerrado
BFU2014-54194-P
CONTROL GENETICO DEL DESARROLLO MUSCULAR EN MAMIFEROS
Cerrado
PID2019-105620RB-I00
AVANCES EN EL CONOCIMIENTO DE LAS BASES GENETICAS Y MOLECULA...
230K€
Cerrado
BFU2015-67131-P
MIRNAS COMO HERRAMIENTAS MOLECULARES MODULANDO DIFERENCIACIO...
202K€
Cerrado
PID2021-125651NB-I00
CARACTERIZACION DE LAS REDES MOLECULARES RESPONSABLES DE LA...
97K€
Cerrado
EPAXIALMYF5KO
Single enhancer knockout analysis of Myf5 function in the de...
100K€
Cerrado
Información proyecto FCSM
Duración del proyecto: 25 meses
Fecha Inicio: 2015-04-15
Fecha Fin: 2017-06-14
Líder del proyecto
UNIVERSITY OF KENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
195K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In utero development is critical for normal skeletal and cardiac muscle function throughout life. Many diseases, such as distal arthrogryposis (affecting 1/3000 live births) and clubfoot (1/1000) in skeletal muscle and arrhythmias in cardiac muscle (1/4000), manifest in the embryonic and foetal period. They permanently affect longevity and quality of life. Because the effects of these diseases are present at birth, the study of in utero samples is essential to understanding the diseases’ properties and effects on the developing muscle tissues. Additionally, many of these afflictions are caused by mutations in the isoforms of troponin or myosin II that are predominantly expressed during human development. Studying the native muscle is all the more important as a control in furthering research on the effects of mutations in troponin and myosin. In particular, human foetal-specific isoforms of myosin II expressed in these muscle are poorly understood and very little has been published about these isoforms. We do know from the literature that myosin’s use of its substrate, ATP, varies widely between isoforms and that the myosin expression changes during times of physiological distress, such as heart failure. Because congenital abnormalities of the heart and skeletal muscle both can originate in the foetal muscle, further investigation is needed into the myosins’ biophysical and biomechanical mechanisms. The overarching goal of this project is to improve understanding of how foetal forms of skeletal and cardiac myosins work and are regulated by troponin in muscle, using biophysical-biochemical, molecular biology and computational modelling techniques. The fellow will do this by experimentally determining the kinetics of myosin-ATP, myosin-actin and myosin-actin-troponin-tropomyosin interactions using stopped-flow kinetic analysis, and then use the parameters defined to inform the computational models developed by Dr. Geeves.