Homological Projective Duality invariance of the Tate Beilinson and Riemann c...
Homological Projective Duality invariance of the Tate Beilinson and Riemann conjectures
This project will be carried out at the Warwick Mathematics Institute under the supervision of Prof. John Greenlees; I have worked for the past eight years at MIT and I will move in 2020 to the University of Warwick as an Associat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AlgTateGro
Constructing line bundles on algebraic varieties around c...
1M€
Cerrado
ANTHOS
Analytic Number Theory Higher Order Structures
1M€
Cerrado
ShimBSD
Shimura varieties and the Birch Swinnerton Dyer conjecture
2M€
Cerrado
AuForA
Automorphic Forms and Arithmetic
2M€
Cerrado
PRE2020-091867
MODULARIDAD DE REPRESENTACIONES DE GALOIS Y ECUACIONES DIOFA...
99K€
Cerrado
Información proyecto HPD-inv of TBR
Duración del proyecto: 28 meses
Fecha Inicio: 2020-04-17
Fecha Fin: 2022-08-31
Líder del proyecto
UNIVERSITY OF WARWICK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
225K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project will be carried out at the Warwick Mathematics Institute under the supervision of Prof. John Greenlees; I have worked for the past eight years at MIT and I will move in 2020 to the University of Warwick as an Associate Professor. Three of the most important conjectures in mathematics - the Tate conjecture, the Beilinson conjecture and the generalized Riemann hypothesis - concern the location and order of the zeros/poles of the L-functions associated to algebraic varieties. For example, in the particular case of an elliptic curve, the Beilinson conjecture reduces to the Birch and Swinnerton-Dyer conjecture, and in the particular case of a point, the generalized Riemann hypothesis reduces to the Riemann hypothesis. These are two of the seven Millenium Prize Problems. The first objective of this project is to prove that the conjectures of Tate, Beilinson, and Riemann, are invariant under homological projective duality in the sense of Kuznetsov. The second objective is to combine this invariance result with the different homological projective dualities in the literature in order to obtain not only a proof of the conjectures of Tate and Beilinson in numerous new cases but also an equivalence between the generalized Riemann hypothesis of very different algebraic varieties. These objectives will greatly improve the state-of-the-art of the Tate and Beilinson conjectures and will considerably deepen our understanding of the generalized Riemann hypothesis. In order to achieve them, I will combine Kontsevich's noncommutative viewpoint on algebraic geometry with mathematical tools from several different areas (e.g., algebraic topology, derived categories, algebraic K-theory, etc). This will enhance my creative and innovative potential, will foster my professional maturity and independence, will diversify my technical skills, and also will enable me to receive advanced training. Hence, this project is directly aligned with the MSCA-IF-EF-RI objectives.