Higher-order motor control of stochastic behavior in an uncertain environment
Decision-making behaviors often occur in the absence of clear instruction to guide action. Instead, theories and experiments have predicted that the brain must compute a decision-value based on past experience to select the best a...
Decision-making behaviors often occur in the absence of clear instruction to guide action. Instead, theories and experiments have predicted that the brain must compute a decision-value based on past experience to select the best action. This implies that the action with the highest subjective value should always be chosen. However, behavior is often stochastic with variability from trial-to-trial. To resolve this long-standing paradox, MOTORHEAD will take full advantage of state-of-the-art in vivo neuronal recordings and computational methods in behaving rodent to bridge for the first time the gap between deterministic decision-signal and stochastic motor commands, achieving thus an unprecedented level of understanding of these unpredictable behaviors. Indeed, despite decade of intensive work, key questions remain unexplored: i) How such a deterministic decision signal is maintained without necessarily causing movement? ii) And how it is then converted to a final motor command with trial-by-trial variability? Here, we hypothesize that these two operations occur in higher-order motor areas, and more particularly across recurrent cortical layers of the secondary motor cortex of rodents. Specifically, we posit that: i) Distinct populations of layer (L) 5 pyramidal neurons (PNs) generate specific movement according to the decision statistics provided by L2/3 PNs. Specific attractor architectures, with different stability to noise perturbation, could cause the system to behave more or less randomly. ii) This top-down excitation could be dynamically gated by bottom-up plasticity forces from reward-related structures, which modulate decision-value to account for past choice outcome, notably when the action no longer generates the expected outcome. To achieve this breakthrough, we propose an ambitious system neuroscience approach, at high spatial and temporal resolution, to illuminate the cellular principles underlying the control and transformation of decision variable.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.