Brainstem circuit ensembles for movement flexibility
Movement is the shared language of behavior across the animal kingdom, orchestrated by dedicated circuits throughout the central nervous system. To survive, animals must move with a high degree of flexibility, requiring precise an...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ECoFly
Neural Circuits for Error Correction
2M€
Cerrado
MOTORHEAD
Higher-order motor control of stochastic behavior in an unce...
2M€
Cerrado
Space and Motion
Genetics and function of neuronal circuits controlling goal...
1M€
Cerrado
DPI2015-65833-P
COMPUTACION EN CICLO-CERRADO: DE LA NEUROCIENCIA A LA TECNOL...
137K€
Cerrado
activeFly
Circuit mechanisms of self movement estimation during walkin...
2M€
Cerrado
FLYVISUALCIRCUITS
Linking neural circuits to visual guidance in flying flies
2M€
Cerrado
Información proyecto ensembles
Duración del proyecto: 68 meses
Fecha Inicio: 2024-04-26
Fecha Fin: 2029-12-31
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Movement is the shared language of behavior across the animal kingdom, orchestrated by dedicated circuits throughout the central nervous system. To survive, animals must move with a high degree of flexibility, requiring precise and rapid changes in speed and trajectory. This flexibility of locomotion depends on the brain's ability to select appropriate motor programs and coordinate body and appendage muscles to match the locomotor movement parameters to the behavioral context. In particular, the brainstem has been identified as the major site for shaping motor commands to provide this flexibility. A key, unsolved question is how the final brainstem commands are generated and adjusted. In this project, we will test a new hypothesis that challenges current views in motor control, namely that the final motor commands driving the flexibility of locomotion movements are the combined product of precise interactions between circuit ensembles in the brainstem and real-time feedback from the spinal circuits. Our approach harnesses the powerful combination of all-optical techniques, scRNAseq, and electrophysiology at single-neuron resolution to determine the principles of circuit integration within and across brainstem circuits in adult zebrafish. This innovative approach will allow us to uncover circuit function, at a level of resolution that has never been achieved before, in a behaving vertebrate animal. By performing a system-wide analysis at single-cell resolution, we expect to gain unique insights that will transform existing views in the field of motor control. This project will chart a novel, system-wide circuit blueprint for movement control and flexibility in vertebrates.