To survive in natural habitats, animals move through space according to their goals. However, the uncertainties of the environment, alongside inevitable variations in neuromuscular signals, change the context in which a walking st...
To survive in natural habitats, animals move through space according to their goals. However, the uncertainties of the environment, alongside inevitable variations in neuromuscular signals, change the context in which a walking step occurs, leading to unintended movement. Thus, task performance can be jeopardized if the erroneous action is not rapidly corrected based on current posture and behavioral goals. How these aspects of control functions are implemented and coordinated across the Central Nervous System remains unknown. Here we propose studying the circuits involved in monitoring our movements, since they are key intermediaries between motor planning and posture-dependent execution. Using the compact brain of the fly Drosophila melanogaster, we will ask two fundamental questions: how is neural activity distributed across multiple networks integrated to estimate self-motion? How is this internal estimate used to correct erroneous movement? Using a self-paced behavior, in which a fly drifting from a stable heading turns based on an internal drift estimate, we have found a circuit sensitive to angular velocity, richly interconnected to the fly’s analogue of the spinal cord and higher-order brain areas, and critical to drift-based turns. We will leverage these results, and combine them with electron microscopy, behavior, physiology, optogenetics and modelling to study circuit mechanisms for course correction. We will: 1) use connectomics and manipulations of neural activity to identify pathways involved in corrective turns, 2) record from the identified neurons and correlate their activity with behavior, 3) perturb cell type-specific neurons to test their role on self-motion computations and on corrective turns, and 4) test neural activity in different behavioral contexts. These experiments will establish unprecedented causal relationships between neural computations and movement and reveal the functional organization of distributed circuits for walking control.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.