High throughput phylogeography of tumors: how the tissue environment influences...
High throughput phylogeography of tumors: how the tissue environment influences cancer evolution?
The tumor microenvironment (TME) is a dynamic ecosystem wherein tumor cells, immune cells and stromal cells interact and evolve. One of the primary characteristics of cancer progression is the diversification, selection and expans...
The tumor microenvironment (TME) is a dynamic ecosystem wherein tumor cells, immune cells and stromal cells interact and evolve. One of the primary characteristics of cancer progression is the diversification, selection and expansion of tumor sub-clones in manner that largely depends on the TME, e.g., through immune responses or metabolic crosstalk. Advances in single-cell and spatial genomics provide exciting opportunities for studying how tumors evolve in their tissue context, by lending an information-rich perspective on which cell subsets are present and how they might interact. However, fundamental questions, which require the knowledge of how single tumor cells are related sub-clonally, remain challenging to study through that perspective. Fundamentally - what characterizes the immediate cellular environment of successful subclones?
Here, we develop transcriptional phylogeography - a paradigm for studying tumor development in-situ, on a transcriptome-wide scale, and at single cell resolution. Our work will leverage studies by us and others that utilized CRISPR/Cas9 mutations coupled with single cell RNA sequencing to infer the lineage structure of thousands of single cells at a time. Adapting this system for in-situ profiling, we will generate the first of its kind phylogeography dataset of a tumor model. This data will allow us to identify tissue locations that harbor critical sub-clonal properties such as unrestrained growth, dedifferentiation, and metastatic seeding, and thereby investigate - through the lens of high throughput genomics- how the TME is associated with these properties. We will also identify and offer solutions for outstanding analytical questions in this nascent area, from lineage inference given sparse data to characterizing the metabolic aspects of tumor-TME cross talk. Together, these studies will help establish new causal links between the TME and tumor evolution and lay the foundation for transcriptional phylogeography analysis.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.