Geometry, Control and Genericity for Partial Differential Equations
Many physics models are described by waves or more generally dispersive equations (Schrödinger equations) with propagation in a non homogeneous and bounded medium. Toy models (mostly in flat backgrounds) have been developed by mat...
Many physics models are described by waves or more generally dispersive equations (Schrödinger equations) with propagation in a non homogeneous and bounded medium. Toy models (mostly in flat backgrounds) have been developed by mathematicians. However, many questions remain open even on these simplified models in the presence of inhomogeneities and boundaries. In particular, the works of mathematicians in the last decade have allowed to exhibit some pathological behaviours which appear to be quite unstable.
A first point in this proposal will be to expand the understanding of the influence of the geometry (inhomogeneities of the media, boundaries) on the behaviour of solutions to dispersive PDE’s.
When these behaviours appear to be unstable, a natural question is whether they are actually rare. The last years have seen the emergence of a new point of view on these questions: random data Cauchy theories.
The idea behind is that for random initial data, the solution’s behaviours are better than expected (deterministically). The second point of this project is precisely to go further in this direction. After identifying these pathological behaviours, is it possible to show that for almost all initial data, almost all geometries, they do not happen?
Understanding how to combine the powerful techniques from micro-local and harmonic analysis with a probabilistic approach in this context should allow a much better understanding of these physically relevant models.
Summarising, the purpose of my project is to develop tools and give answers to the following questions in the context of dispersive PDE’s (and to some extent fluids mechanics)
Can we understand the influence of the geometric background (and boundaries) on concentration properties and the the behaviour of solutions to dispersive evolution PDE’s?
Can we define generic behaviours for solutions to waves and fluids PDE's ? Can we show that some very pathological behaviours (which do happen) are actually very rare?ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.