Probabilistic and Dynamical Study of Nonlinear Dispersive Equations
Nonlinear dispersive partial differential equations (PDEs) appear ubiquitously as models describing wave phenomena in various branches of physics and engineering. Over the last few decades, multilinear harmonic analysis has played...
Nonlinear dispersive partial differential equations (PDEs) appear ubiquitously as models describing wave phenomena in various branches of physics and engineering. Over the last few decades, multilinear harmonic analysis has played a crucial role in the development of the theoretical understanding of the subject. Furthermore, in recent years, a non-deterministic point of view has been incorporated into the study of nonlinear dispersive PDEs, enabling us to study typical behaviour of solutions in a probabilistic manner and go beyond the limit of deterministic analysis.
The main objective of this proposal is to develop novel mathematical ideas and techniques, and make significant progress on some of the central problems related to the nonlinear Schrödinger equations (NLS) and the Korteweg-de Vries equation (KdV) from both the deterministic and probabilistic points of view. In particular, we consider the following long term projects:
1. We will study properties of invariant Gibbs measures for nonlinear Hamiltonian PDEs. One project involves establishing a new connection between the limiting behaviour of the Gibbs measures and the concentration phenomena of finite time blowup solutions. The other project aims to understand the space-time covariance of the Gibbs measures in the weakly nonlinear regime.
2. We will first construct the invariant white noise for the cubic NLS on the circle. Then, we will provide a statistical description of the global-in-time dynamics for the stochastic KdV and stochastic cubic NLS on the circle with additive space-time white noise.
3. We will develop novel analytical techniques and construct the local-in-time dynamics for the cubic NLS on the circle in a low regularity.
4. We will advance the understanding of traveling waves and prove scattering for some energy-critical NLS with non-vanishing boundary conditions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.