Gene expression dosage as a driver of cellular and physiological traits
The expression dosage of a gene is a fundamental determinant of its downstream function at the cellular and organismal level, and its genetic or environmental perturbations are a driving force of most common and rare disease in hu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DeCRyPT
Deciphering Cis Regulatory Principles of Transcriptional reg...
2M€
Cerrado
TIN2015-71079-P
MODELOS MARKOVIANOS GRAFICOS DE ORDEN LIMITADO EN LA GENOMIC...
43K€
Cerrado
3D-REVOLUTION
The impact of 3D regulatory landscapes on the evolution of d...
2M€
Cerrado
FateID
Learning from the past linking ancestral epigenetic states...
2M€
Cerrado
ARRAY SEQ
Array tagged single cell gene expression by parallel linear...
150K€
Cerrado
PID2020-119715GB-I00
DESCUBRIMIENTO DE LAS PALABRAS EPIGENETICAS DE LA REGULACION...
105K€
Cerrado
Información proyecto DOSAGE2FUNC
Duración del proyecto: 60 meses
Fecha Inicio: 2022-06-20
Fecha Fin: 2027-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The expression dosage of a gene is a fundamental determinant of its downstream function at the cellular and organismal level, and its genetic or environmental perturbations are a driving force of most common and rare disease in humans. However, we have limited understanding of the specific shape of dosage-to function-curves for human genes, what factors and mechanisms drive their variation across genes, phenotypes and cellular contexts, and how this contributes to functional architecture of human traits. This project addresses these questions using large human genetic data sets and cutting-edge experimental approaches. Using blood cell traits as our study system, we will characterize the relationship between gene dosage and cellular and physiological function in in unprecedented scale and depth. This addresses fundamental questions in systems biology and produces insights that can also benefit genomic medicine and drug development. The Work Packages of this study will: 1) Establish the dosage-to-function relationship for hundreds of human genes, associating genetically driven gene dosage to blood cell traits in large human genetic data, and by an innovative CRISPR-based experimental approach that maps gene dosage changes to multiple cellular phenotypes; 2) Elucidate how cellular the dosage-to-cellular-function relationships differ between cellular states, and use single-cell RNA sequencing to analyze how regulatory networks mediate context-specific dosage-to-function effects; 3) Characterize upstream genomic and environmental regulators of gene dosage. This project will build the first comprehensive, generalizable picture of gene dosage-to-function relationships in humans. Our analysis will link these insights to functional architecture of human traits, providing unique generalizable insights into how disruption of gene dosage and regulatory networks underlies human traits at the cellular and physiological level.