Innovating Works

MY MITOCOMPLEX

Financiado
Functional relevance of mitochondrial supercomplex assembly in myeloid cells The emerging field of immunometabolism has a strong potential to uncover novel targets for the manipulation of immune cell function. Myeloid cells are involved in innate and adaptive immunity and tolerance, therefore the identific... The emerging field of immunometabolism has a strong potential to uncover novel targets for the manipulation of immune cell function. Myeloid cells are involved in innate and adaptive immunity and tolerance, therefore the identification of pathways that regulate their activity may have implications in many diseases. Research in the host laboratory has focused on how sensing of innate stimuli (infections and tissue damage) lead to mitochondrial adaptations in myeloid cells. These mitochondrial adaptations can influence the electron transport chain (ETC), resulting in differences in reactive oxygen species (ROS) production, ATP synthesis, redox balance and metabolites. The ETC consists of four respiratory complexes (CI-CIV), which can, excluding CII, form super complexes. The formation of these super complexes is regulated and this regulation has been shown to have biological relevance. However, whether mitochondrial SC organization couples to regulation of immune cell function and the molecular mechanisms involved is not known. Therefore, we propose to investigate how mitochondrial SC formation affects macrophage and dendritic cell function. Identification of the mechanisms connecting mitochondrial adaptations and myeloid cell function could potentially unveil therapeutic targets. Much immunometabolism studies could be improved by in vivo models, therefore we aim at studying the effects of SC formation regulation in vivo. We intend to use targeted and non-targeted approaches to address this question. A mouse model that exhibits a non-active SC assembly factor (SCAF1) will be a key tool to address this question in vivo. The non-independent approach includes state-of-the-art metabolomics and transcriptomics. ver más
31/10/2023
173K€
Duración del proyecto: 23 meses Fecha Inicio: 2021-11-01
Fecha Fin: 2023-10-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-10-31
H2020 No se conoce la línea exacta de financiación, pero conocemos el organismo encargado de la revisión del proyecto.
Presupuesto El presupuesto total del proyecto asciende a 173K€
Líder del proyecto
CENTRO NACIONAL DE INVESTIGACIONES CARDIOVASC... No se ha especificado una descripción o un objeto social para esta compañía.