The general theme is to explore the connections between reasoning and computations in mathematics. There are two main research directions. The first research direction is a refomulation of Hilbert's program, using ideas from forma...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MATHFOR
Líder del proyecto
GOETEBORGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The general theme is to explore the connections between reasoning and computations in mathematics. There are two main research directions. The first research direction is a refomulation of Hilbert's program, using ideas from formal, or pointfree topology. We have shown, with multiple examples, that this allows a partial realization of this program in commutative algebra, and a new way to formulate constructive mathematics. The second research direction explores the computational content using type theory and the Curry-Howard correspondence between proofs and programs. Type theory allows us to represent constructive mathematics in a formal way, and provides key insight for the design of proof systems helping in the analysis of the logical structure of mathematical proofs. The interest of this program is well illustrated by the recent work of G. Gonthier on the formalization of the 4 color theorem.