Duality in Formal Languages and Logic a unifying approach to complexity and se...
Dualities between algebraic and topological structure are pervasive in mathematics, and toggling back and forth between them has often been associated with important breakthroughs. The main objective of this project is to bring th...
Dualities between algebraic and topological structure are pervasive in mathematics, and toggling back and forth between them has often been associated with important breakthroughs. The main objective of this project is to bring this important tool to bear on a number of subjects in theoretical computer science thereby advancing, systematising, and unifying them.
One subject of focus is the search for robust extensions of the theory of regular languages. A powerful technical tool for classifying regular languages and proving decidability results is Eilenberg-Reiterman theory, which assigns classes of finite monoids or single profinite algebras to classes of languages. Recent results by the PI and her co-authors show that the theory may be seen as a special case of Stone duality for Boolean algebras with operators. We want to:
- Develop an Eilenberg-Reiterman theory beyond regular languages with the goal of obtaining new tools and separation results for Boolean circuit classes, an active area in the search for lower bounds in complexity theory.
-Systematise and advance the search for robust generalisations of regularity to other structures such as infinite words, finite and infinite trees, cost functions, and words with data.
The second subject of focus is the development of duality theoretic methods for logics with categorical semantics. We want to approach the problem incrementally:
- View duality for categorical semantics through a spectrum of intermediate cases going from regular languages over varying alphabets, Ghilardi-Zawadowski duality for finitely presented Heyting algebras, and the Bodirsky-Pinsker topological Birkhoff theorem to Makkai's, Awodey and Forssell's, and Coumans' recent work on first-order logic duality, thus unifying topics in semantics and formal languages.
Our main tools come from Stone duality in various forms including the Jonsson-Tarski canonical extensions and profinite algebra, and from universal algebra and category theory.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.