Finite automata are fundamental objects in Computer Science, of great importance on one hand for theoretical aspects
(formal language theory, decidability, complexity) and on the other for practical applications (parsing). In num...
Finite automata are fundamental objects in Computer Science, of great importance on one hand for theoretical aspects
(formal language theory, decidability, complexity) and on the other for practical applications (parsing). In number theory, finite automata are mainly used as simple devices for generating sequences of symbols over a finite set (e.g., digital representations of real numbers), and for recognizing some sets of integers or more generally of finitely generated abelian groups or monoids. One of the main features of these automatic structures comes from the fact that they are highly ordered without necessarily being trivial (i.e., periodic). With their rich fractal nature, they lie somewhere between order and chaos, even if, in most respects, their rigidity prevails. Over the last few years, several ground-breaking results have lead to a
great renewed interest in the study of automatic structures in arithmetics.
A primary objective of the ANT project is to exploit this opportunity by developing new directions and interactions between automata and number theory. In this proposal, we outline three lines of research concerning fundamental number theoretical problems that have baffled mathematicians for decades. They include the study of integer base expansions of classical constants, of arithmetical linear differential equations and their link with enumerative combinatorics, and of arithmetics in positive characteristic. At first glance, these topics may seem unrelated, but, surprisingly enough, the theory of finite automata will serve as a natural guideline. We stress that this new point of view on classical questions is a key part of our methodology: we aim at creating a powerful synergy between the different approaches we propose to develop, placing automata theory and related methods at the heart of the subject. This project provides a unique opportunity to create the first international team focusing on these different problems as a whole.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.