DNA replication is a crucial, but potentially dangerous process in every cellular division. A failure to maintain the integrity of replicating chromosomes leads to genome instability, an early event in tumorigenesis. Most common a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2013-49149-R
PREVENCION DE INESTABILIDAD GENOMICA Y CANCER: MODIFICACIONE...
Cerrado
SAF2016-80626-R
REGULACION DE LA RESPUESTA CELULAR AL DAÑO DEL DNA Y AL ESTR...
230K€
Cerrado
META-CYCLE
New players in the regulation of DNA replication fork speed
231K€
Cerrado
SAF2008-01596
ES LA RESPUESTA A DAÑO EN EL ADN UNA BARRERA CONTRA EL CANCE...
227K€
Cerrado
TELOMERES
Genome wide identification of factors controlling the telome...
1M€
Cerrado
REPLICONSTRAINTS
Dissecting the constraints that define the eukaryotic DNA re...
1M€
Cerrado
Información proyecto ReStreCa
Líder del proyecto
University of Zurich
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
DNA replication is a crucial, but potentially dangerous process in every cellular division. A failure to maintain the integrity of replicating chromosomes leads to genome instability, an early event in tumorigenesis. Most common anti-cancer drugs also interfere with DNA synthesis, by largely undefined mechanisms. My lab specializes in the structural and molecular characterization of DNA replication stress in higher eukaryotes, combining standard cell and molecular biology with specialized single molecule analysis of replication intermediates.
The first aim of our research is to gain mechanistic information about the elusive impact of oncogene activation on DNA replication. By direct structural analysis of tissue culture models of tumorigenesis, we have recently uncovered specific defects in DNA synthesis associated with DNA damage checkpoint activation. We plan to expand these studies to compare the effect of different oncogenes and to identify cellular factors modulating oncogene-induced genotoxicity.
We are also elucidating the cytotoxic mechanisms of anti-cancer drugs that challenge DNA replication. Comparing the molecular consequences of chemotherapeutic treatments in control cells and cells lacking cancer-related factors, we plan to uncover how precisely different drugs interfere with replication and which cellular players mediate their cytotoxicity. We plan to complement these studies with a proteomic-based screen, to identify novel factors modulating replication of a damaged template.
Finally, we plan to analyze replication features in different populations of stem cells, as the cellular response to replication stress was recently proven essential for stem cell maintenance. We aim to provide mechanistic insight into the constitutive activation of the DNA damage response reported in embryonic stem cells. We also plan to expand these investigations to hematopoietic stem cells, where we recently observed similar phenomena upon stimuli-induced proliferation.