DNA based nanometry Exploring chromatin structure and molecular motors
DNA metabolism is governed by a delicate balance between compacting the stored genetic information while simultaneously ensuring a highly dynamically access to it. This interdisciplinary project aims (i) to understand the mechanic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2014-54181-P
CORRELACION ENTRE LA ESTRUCTURA, ENSAMBLAJE Y PROPIEDADES DE...
266K€
Cerrado
HRRinDNAwithSSB
Unraveling nanosecond motions in nucleic acids with high res...
185K€
Cerrado
Origami-SEQ
SINGLE MOLECULE DNA SEQUENCING THROUGH DNA ORIGAMI NANOANTEN...
159K€
Cerrado
BES-2009-026140
ESTRUCTURA DE MAQUINAS MOLECULARES IMPLICADAS EN DINAMICA CR...
43K€
Cerrado
EM-FRAME
DNA origami scaffolds for structure determination by single...
222K€
Cerrado
CTQ2014-57515-C2-1-R
INTERFASES NANOESTRUCTURADAS DE DERIVADOS DEL ADN PARA RECON...
67K€
Cerrado
Información proyecto DNAMETRY
Líder del proyecto
UNIVERSITAET LEIPZIG
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
DNA metabolism is governed by a delicate balance between compacting the stored genetic information while simultaneously ensuring a highly dynamically access to it. This interdisciplinary project aims (i) to understand the mechanics and dynamics of chromatin as well as the mechanism of enzymes involved in DNA metabolism on a molecular level and (ii) to develop new nanometric tools based on optical methods and 3D DNA nanostructures that allow addressing new experimental questions. Within the research project novel nanoscopic detection assays based on the combination of magnetic tweezers and optical methods shall be developed, such as ultra-fast torque spectroscopy and combined FRET-force spectroscopy. Our single-molecule assays shall be applied to study the material properties of self-assembled 3D DNA nanostructures, which shall then be used to set up improved high resolution single-molecule assays. These technological improvements will become key to obtain insight into structure and dynamics of in vitro reconstituted chromatin as response to external mechanical stress but also into the operation of molecular motors that themselves generate forces and torques on DNA and chromatin. The main goal of the project is to use nanotechnological tools to understand design principles of biomolecules, biomaterials and biological motors, which in turn shall be used to develop smarter nanotools and functional elements.