Direct numerical simulations towards ultimate turbulence
Turbulent thermal convection plays an important role in a wide range of natural and industrial settings, from astrophysical and geophysical flows to process engineering. The paradigmatic representation of thermal convection is Ray...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2013-40674-P
ESTUDIO NUMERICO DE LOS MECANISMOS DE TRANSICION A LA TURBUL...
24K€
Cerrado
TURBOFLOW
Decoding the complexity of turbulence at its origin
1M€
Cerrado
MULTITURB
A Multidisciplinary Approach to Turbulence
233K€
Cerrado
MTM2015-68818-R
MODELIZACION NUMERICA PARA PROBLEMAS DE INTERES GEOFISICO
45K€
Cerrado
MTM2010-16930
CALCULO NUMERICO DE VARIEDADES INVARIANTES EN EDPS DISIPATIV...
26K€
Cerrado
PipeEdge
Analysis of coherent states at the laminar turbulence bounda...
162K€
Cerrado
Información proyecto UltimateRB
Duración del proyecto: 63 meses
Fecha Inicio: 2018-09-28
Fecha Fin: 2023-12-31
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Turbulent thermal convection plays an important role in a wide range of natural and industrial settings, from astrophysical and geophysical flows to process engineering. The paradigmatic representation of thermal convection is Rayleigh-Bénard (RB) flow in which a layer of fluid is heated from below and cooled from above. A major challenge is to determine the scaling relation of the Nusselt number (Nu), i.e. the dimensionless heat transport, with the Rayleigh number (Ra), which is the dimensionless temperature difference between the two plates, expressed as Nu∼Ra^γ. Theory predicts that the scaling exponent γ increases for extremely strong driving when the boundary layers transition from laminar to turbulent. Understanding the transition to this so-called ‘ultimate’ regime is crucial since an extrapolation of results from lab-scale experiments and simulations to astro- and geophysical phenomena becomes meaningless when the transition to this ‘ultimate’ state is not understood. So far, there is no consensus among experimental efforts for obtaining the ‘ultimate’ regime. We propose using direct numerical simulations (DNS) to gain a better understanding of the transition towards the ‘ultimate’ regime. While obtaining ‘ultimate’ thermal convection in simulations has been elusive, new developments make this feasible now. The benefit of simulations is that they allow full access to the flow and temperature fields, while all boundary conditions are set exactly and independently. This allows us to test various physical effects at full dynamic similarity. To trigger the excitation of the ‘ultimate’ regime at lower Ra than in standard small aspect ratio cells, we want to study the effect of roughness, additional shear, and large domains in which a stronger flow can develop than in confined small aspect ratio cells that are traditionally considered. The addition of rotation will be studied to disentangle the complicated effect of rotation on high Ra number thermal convection.