Cracking the Anterior Cingulate Code Toward a Unified Theory of ACC Function
Anterior cingulate cortex is one of the largest riddles in cognitive neuroscience and presents a major challenge to mental health research. ACC dysfunction contributes to a wide spectrum of psychiatric and neurological disorders b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DistriBrainRep
Studying brain representations as a distributed process fro...
195K€
Cerrado
Mapping the mind
The psychological construction of mental states How the min...
192K€
Cerrado
HUMO
What is everybody doing? Social prediction categorization...
1M€
Cerrado
PSI2012-37490
INFLUENCIA DE LA IE Y SU ENTRENAMIENTO EN LAS BASES NEURALES...
18K€
Cerrado
DynViB
Dynamic effective connectivity of the Virtual Brain
270K€
Cerrado
CELPRED
Circuit elements of the cortical circuit for predictive proc...
2M€
Cerrado
Información proyecto See-ACC
Duración del proyecto: 83 meses
Fecha Inicio: 2018-07-30
Fecha Fin: 2025-06-30
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Anterior cingulate cortex is one of the largest riddles in cognitive neuroscience and presents a major challenge to mental health research. ACC dysfunction contributes to a wide spectrum of psychiatric and neurological disorders but no one knows what it actually does. Although more than a thousand papers are published about it each year, attempts to identify its function have been confounded by the fact that a multiplicity of tasks and events activate ACC, as if it were involved in everything.
Recently, I proposed a theory that reconciles many of the complexities surrounding ACC. This holds that ACC selects and motivates high-level, temporally extended behaviors according to principles of hierarchical reinforcement learning. For example, on this view ACC would be responsible for initiating and sustaining a run up a steep mountain. I have instantiated this theory in two computational models that make explicit the theory's assumptions, while yielding testable predictions. In this project I will integrate the two computational models into a unified, biologically-realistic model of ACC function, which will be evaluated using mathematical techniques from non-linear dynamical systems analysis. I will then systematically test the unified model in a series of experiments involving functional magnetic resonance imaging, electroencephalography and psychopharmacology, in both healthy human subjects and patients.
The establishment of a complete, formal account of ACC will fill an important gap in the cognitive neuroscience of cognitive control and decision making, strongly impact clinical practice, and be important for artificial intelligence and robotics research, which draws inspiration from brain-based mechanisms for cognitive control. The computational modelling work will also link high level, abstract processes associated with hierarchical reinforcement learning with low level cellular mechanisms, enabling the theory to be tested in animal models.