Controlling Quantum Experiments with Reinforcement Learning
This proposal aims to advance the integration of state-of-the-art machine learning and artificial intelligence (AI) with quantum physics experiments. The abundance of physics data coming from experiments and simulations of quantum...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QuantAI
Artificial agency and learning in quantum environments
2M€
Cerrado
PRESQUE
A predicting platform for designing semiconductor quantum de...
185K€
Cerrado
QNets
Open Quantum Neural Networks from Fundamental Concepts to I...
1M€
Cerrado
Información proyecto ConQuER
Duración del proyecto: 31 meses
Fecha Inicio: 2020-02-24
Fecha Fin: 2022-09-30
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
219K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal aims to advance the integration of state-of-the-art machine learning and artificial intelligence (AI) with quantum physics experiments. The abundance of physics data coming from experiments and simulations of quantum systems allows us to use the power and efficiency of machine learning methods to extract information from this data in a way that goes beyond traditional methods. Based on this insight, I will design and implement a reinforcement learning (RL) method that can directly control, stabilize (to create a quantum memory) and tune (for device characterization and setup) a multiple-spin-qubit experiment at the Niels Bohr Institute in Copenhagen. The resulting framework and open-source AI software are expected to be useful in any other quantum experiment for which tuning is a major component, and is expected to generate a large impact in the community. Automatic device tuning will free up precious time resources that can be invested in significant experimental advances.