Artificial agency and learning in quantum environments
Quantum mechanics is our most fundamental theory of physics. It has formed, and often challenged, our understanding of physical reality. We use quantum mechanics to manipulate and control matter and light at the atomic scale, and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
PID2019-109094GB-C22
COMPUTACION CUANTICA EN RESERVORIOS Y SISTEMAS DINAMICOS NO-...
46K€
Cerrado
FIS2016-80681-P
APRENDIZAJE CUANTICO Y NO CLASICALIDAD
185K€
Cerrado
BEC-NETWORKS
Networks of coupled photon Bose Einstein condensates when c...
2M€
Cerrado
PRE2019-089393
Física de partículas: Tecnologías de inteligencia artificial...
98K€
Cerrado
FIS2015-69983-P
INFORMACION CUANTICA CON TECNOLOGIAS CUANTICAS
107K€
Cerrado
Información proyecto QuantAI
Duración del proyecto: 64 meses
Fecha Inicio: 2022-05-24
Fecha Fin: 2027-09-30
Líder del proyecto
UNIVERSITAET INNSBRUCK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum mechanics is our most fundamental theory of physics. It has formed, and often challenged, our understanding of physical reality. We use quantum mechanics to manipulate and control matter and light at the atomic scale, and it provides the basis for many new technologies. At the same time, the rise of artificial intelligence (AI) and machine learning (ML) is gaining momentum in science and basic research. ML is already employed in different areas of physics, mostly for big data processing and classification. But the development of AI is heading much further and is likely to transform basic science in the near future. In this project, we will investigate the use of AI in basic science, with a focus on quantum physics and, more specifically, quantum information. We will develop models of artificial agency which are beneficial for basic research, both from a practical and a foundational perspective. We will develop classical artificial learning agents that can be used, e.g., for adaptive schemes of quantum error correction and integrated in large-scale quantum computing architectures, the design of complex quantum communication networks, and the study of novel computational phases of matter. The models of learning agents that we develop will facilitate applications towards AI-driven quantum experiment and scientific discovery. Our focus will be on transparent and interpretable models for artificial agency that are beneficial if not needed for basic science. These models can be used in future hybrid laboratories where human researchers will interact with AI assistant systems. On the foundational side, we will investigate quantum agents and the role of agency in quantum theory. These investigations will shed light not only on the possible ways of learning in a quantum environment, but also on the physical dimension of AI, the explainability of quantum AI, and the consistency of quantum theory.