In recent years, the use of machine learning (ML) for the study of physics has experienced a strong boost. However, most of the machines used are black boxes, and the causal relation between inputs and outputs is often impossible...
In recent years, the use of machine learning (ML) for the study of physics has experienced a strong boost. However, most of the machines used are black boxes, and the causal relation between inputs and outputs is often impossible to extract. Nonetheless, a critical aspect when dealing with physical systems is not only to make correct predictions, but to understand the physical laws which underlie these assessments. Recently, an increasing number of works aim at developing interpretable ML methods, from which such hidden laws can be extracted. However, their application to physics has been often limited to supervised and unsupervised learning approaches.
The aim of this project is: 1) construct an interpretable reinforcement learning method; 2) extract hidden rules and features in timely and paramount problems in physics. The method combines three well-established concepts of ML: projective simulation, graph neural networks (GNN) and hidden variable disentanglement. PS provides interpretable RL agents that can be trained for a variety of tasks, from the construction of quantum experiments, via skill acquisition in robotics, to the modelling of honeybee colonies. By enhancing their learning power and interpretability with GNNs and variable disentanglement, we will extract the hidden features of the systems the RL agents have interacted with and ultimately, the physical laws governing them. In particular, we will tackle problems in the field of condensed matter, where particles diffuse either passively or actively, to reach a target state. Moreover, we will consider ensembles of RL agents, so as to analyze not only the physical properties of the systems, but also their interactions and communication dynamics in the quest of a common target.
The originality of the proposal is directly related to: 1) the methods that will be developed; 2) the systems of study; 3) most importantly, the information we will access and discover with the interpretable RL agents.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.