EL PROYECTO SE PROPONE INCIDIR EN LA OBTENCION DE RESULTADOS ARITMETICOS EN EL CONTEXTO GENERAL DEL PROGRAMA DE LANGLANDS, SUS OBJETIVOS SON:1, ESTUDIO DE PROPIEDADES ARITMETICAS DE FORMAS AUTOMORFAS ASOCIADAS A CURVAS DE SHIMURA;...
ver más
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo AGENCIA ESTATAL DE INVESTIGACIÓN notifico la concesión del proyecto
el día 2009-01-01
No tenemos la información de la convocatoria
0%
100%
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
EL PROYECTO SE PROPONE INCIDIR EN LA OBTENCION DE RESULTADOS ARITMETICOS EN EL CONTEXTO GENERAL DEL PROGRAMA DE LANGLANDS, SUS OBJETIVOS SON:1, ESTUDIO DE PROPIEDADES ARITMETICAS DE FORMAS AUTOMORFAS ASOCIADAS A CURVAS DE SHIMURA; DESARROLLO DE SOFTWARE ESPECIFICO PARA LA DETERMINACION DE PUNTOS CM Y TRATAMIENTO COMPUTACIONAL DE FORMAS DE MAASS,2, CONSTRUCCION DE ALGORITMOS PARA LA OBTENCION DE FORMAS PARABOLICAS DEFINIDAS SOBRE CUERPOS CUADRATICOS IMAGINARIOS Y CONTRIBUCIONES AL ESTUDIO DE LAS PROPIEDADES ARITMETICAS DE VARIEDADES MODULARES DE HILBERT,3, GENERALIZACION DE RESULTADOS RELATIVOS A PROPIEDADES DE MODULARIDAD DE REPRESENTACIONES DE GALOIS EN DIMENSIONES SUPERIORES; CONTRIBUCIONES A LA CONJETURA DE SERRE GENERALIZADA Y AL ESTUDIO DE IMAGENES DE REPRESENTACIONES DE GALOIS; APLICACIONES A LA RESOLUCION DE ECUACIONES DIOFANTICAS Y AL PROBLEMA INVERSO DE LA TEORIA DE GALOIS,4, CONTRIBUCION AL ESTUDIO DE LA TEORIA DE GALOIS DE ECUACIONES DIFERENCIALES PARCIALES Y DE LA TEORIA DE GALOIS DIFERENCIAL GENERAL EN CARACTERISTICA POSITIVA; RESOLUCION EXPLICITA DE PROBLEMAS DE INMERSION GALOISIANA, REPRESENTACIONES DE GALOIS\FORMAS AUTOMORFAS\CURVAS DE SHIMURA\VARIEDADES MODULARES DE HILBERT\GRUPOS DE GALOIS\TEORIA DE GALOIS DIFERENCIAL\FORMAS MODULARES\VARIEDADES ABELIANAS