The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorp...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MTM2015-66716-P
PROGRAMA ARITMETICO DE LANGLANDS: AVANCES EN RECIPROCIDAD Y...
103K€
Cerrado
PariTorMod
P adic Arithmetic Geometry Torsion Classes and Modularity
1M€
Cerrado
MTM2009-11393
TEORIA DE SOLITONES Y MODULI DE CURVAS Y VARIEDADES ABELIANA...
83K€
Cerrado
AF AND MSOGR
Automorphic Forms and Moduli Spaces of Galois Representation...
100K€
Cerrado
MTM2012-33830
AVANCES EN EL PROGRAMA DE LANGLANDS: ARITMETICA DE FORMAS AU...
101K€
Cerrado
AF and MSOGR
Automorphic Forms and Moduli Spaces of Galois Representation...
1M€
Cerrado
Información proyecto AAMOT
Líder del proyecto
EIT MANUFACTURING ASBL
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.