Computations of Automorphic Galois Representations
In groundbreaking work, the researcher has developed the first ever algorithm for explicitly determining the mod l-Galois representations of classical modular forms. He has applied this to the Inverse Galois Problem and to Lehmer'...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-107297GB-I00
MODULARIDAD DE REPRESENTACIONES DE GALOIS Y ECUACIONES DIOFA...
37K€
Cerrado
MTM2016-76196-P
REPRESENTACIONES Y CARACTERES DE GRUPOS FINITOS III
46K€
Cerrado
HMF
Hilbert Modular Forms and Diophantine Applications
162K€
Cerrado
AF and MSOGR
Automorphic Forms and Moduli Spaces of Galois Representation...
1M€
Cerrado
LEGS
p adic Langlands and the Emerton Gee stack
2M€
Cerrado
Información proyecto COMPAUTGALREP
Líder del proyecto
UNIVERSITY OF WARWICK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
165K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In groundbreaking work, the researcher has developed the first ever algorithm for explicitly determining the mod l-Galois representations of classical modular forms. He has applied this to the Inverse Galois Problem and to Lehmer's Conjecture on the non-vanishing of the Ramanujan tau-function. Arguably the greatest advance in arithmetic geometry within the last decade has been the proof by Khare and Wintenberger of Serre's Conjectures over the rationals. A version of Serre's Conjectures over totally real fields has been suggested by Buzzard, Diamond and Jarvis, complete with explicit formulae for the Serre 'weights' and 'levels'. The broad objectives of the proposal are as follows: 1. Improve the researcher's algorithms for the explicit determination of mod l-Galois representations of classical modular forms. 2. Give a corresponding algorithm for Hilbert modular forms. 3. With the help of 2, provide systematic evidence for Serre's Conjectures over real quadratic fields. 4. Systematically apply the Galois representations of classical and Hilbert modular forms to the Inverse Galois Problem.