Computational Fluid Dynamics Aided Design of the Propulsion and Locomotion Syste...
Computational Fluid Dynamics Aided Design of the Propulsion and Locomotion Systems of a Bioinspired Robot Octopus
The CFD-OctoProp project aims to investigate the fluid mechanics involved with the propulsion and locomotion systems of cephalopods by means of computational fluid dynamics (CFD) tools. The development of an accurate kinematic and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
OCTOPUS
Novel Design Principles and Technologies for a New Generatio...
10M€
Cerrado
DPI2015-71645-P
CONTROL DE LA CANTIDAD DE MOVIMIENTO EN LA ESTELA DE SISTEMA...
159K€
Cerrado
DPI2016-75330-P
HUMASOFT: DISEÑO Y CONTROL DE ESLABONES BLANDOS PARA ROBOTS...
169K€
Cerrado
DPI2016-80547-R
CONTROL DE ROBOTS FLEXIBLES SOMETIDOS A FUERZAS EXTERNAS. AP...
200K€
Cerrado
DPI2013-49564-EXP
SEÑALES QUIMICAS PARA EL CONTROL DE ACTUADORES ROBOTICOS
42K€
Cerrado
PORTWINGS
Decoding the Nature of Flapping Flight by port Hamiltonian S...
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The CFD-OctoProp project aims to investigate the fluid mechanics involved with the propulsion and locomotion systems of cephalopods by means of computational fluid dynamics (CFD) tools. The development of an accurate kinematic and fluid dynamics model of the propelling apparatus of these soft-bodied organisms is intended to aid in the design of an actuator which will eventually be implemented in an octopus-inspired robot. The primary focus of the research project will be the development of a series of numerical models capable of dealing with the fluid-structure interactions (FSI) which arise during the displacement of the robot in water. The CFD analysis will try and derive the most suitable shape and elastic characteristic of the siphon which is best suited for generating thrust in order to propel the robot octopus. Secondly, the incorporation of a kinematic model of the crawling octopus in a CFD code will be perfomed in order to provide the essential background on the techniques adopted by the octopus for optimizing its own motion through water. The final goal of this project is to support in the development of an underwater robot capable of unprecedented motion skills for application in environmental monitoring.