Complex dynamics studies the evolution of a complex manifold under the action of a holomorphic map. In this proposal we study the dynamical systems generated by transcendental (either entire or meromorphic) maps acting on the comp...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CoTraDy
Duración del proyecto: 33 meses
Fecha Inicio: 2016-11-23
Fecha Fin: 2019-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Complex dynamics studies the evolution of a complex manifold under the action of a holomorphic map. In this proposal we study the dynamical systems generated by transcendental (either entire or meromorphic) maps acting on the complex plane. By using a wide range of classic and new techniques, we investigates epecially the combinatorics of these maps: that is to say, we build relations between the dynamics of the transcendental map on some specific subset of the complex plane and the dynamics of the shift map on the space of infinite sequences over the integers. Combinatorics in this setting is a powerful tool to understand the dynamics of transcendental maps and to understand the structure of specific families of transcendental maps. The study of combinatorics for transcendental maps is also likely to offer new insights in the combinatorics for rational maps and possibly in other areas of complex dynamical systems, like the systems generated by the iteration of holomorphic maps on manifolds with more than one complex dimension.