Bridging Integrability and Chaos to Decipher Out of equilibrium Quantum Matter
The proposal tackles fundamental open questions about out-of-equilibrium quantum matter that have recently become of experimental and technological relevance. The main objectives are: (i) Understand how, and when equilibrium stati...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DYNAMIQS
Relaxation dynamics in closed quantum systems
2M€
Cerrado
FIS2015-63966-P
SISTEMAS INTEGRABLES EN FISICA CUANTICA: CADENAS DE ESPINES,...
42K€
Cerrado
FIS2008-00209
SOLUBILIDAD, INTEGRABILIDAD Y CAOS EN SISTEMAS CLASICOS Y CU...
68K€
Cerrado
FIS2015-63770-P
MAS ALLA DE CAMPO MEDIO Y SOLUCIONES EXACTAS EN SISTEMAS CUA...
65K€
Cerrado
GENESYS
from Generalised hydrodynamics to new Effective descriptions...
Cerrado
QUEST
Quantum Ergodicity: Stability and Transitions
2M€
Cerrado
Información proyecto BRICDOQ
Duración del proyecto: 30 meses
Fecha Inicio: 2020-03-12
Fecha Fin: 2022-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposal tackles fundamental open questions about out-of-equilibrium quantum matter that have recently become of experimental and technological relevance. The main objectives are: (i) Understand how, and when equilibrium statistical mechanics emerges from the coherent dynamics of closed quantum systems. (ii) Explain the fundamental mathematical structure underlying universal dynamical features. I will address these issues by developing an overarching description of finite-time dynamics based on integrable and chaotic systems. The idea is to characterise quantitatively the dynamics by pinpointing paradigmatic exactly solvable models. The exact solutions of these models will also help to elaborate new analytical and numerical techniques. The proposal encompasses two main parts: WP1-2. WP1 is devoted to integrable systems. These are systems with a macroscopic number of local conservation laws. They play a key role in understanding out-of-equilibrium quantum matter because their dynamics is sufficiently constrained to be, to some extent, solvable. I will devise a general method for describing their large but finite time dynamics. In particular, I will characterise their approach to the asymptotic (generalized) hydrodynamic regime which I recently helped to identify. WP2 focusses on maximally chaotic systems, i.e. systems without local conservation laws. These systems are interesting because are able to model several generic dynamical features. I will characterise the maximally-chaotic dynamics in any spatial dimension using dual-unitary quantum circuits, a class of solvable periodically-driven systems that my collaborators and I recently introduced.