Innovating Works
FCH-01-4-2020
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing consensus that (long haul) HD transport and HD stationary will be the key market for hydrogen Fuel Cells (FC) from the mid-2020s onwards. In addition, this transport sector struggles with the electrification of their portfolio. A large element is considered to be the consequence of theimpact on the production and supply chain, and the workshop and parts organisation. The complexity of the system as such is seen as too large of an obstacle.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 29-04-2020.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing consensus that (long haul) HD transport and HD stationary will be the key market for hydrogen Fuel Cells (FC) from the mid-2020s onwards. In addition, this transport sector struggles with the electrification of their portfolio. A large element is considered to be the consequence of theimpact on the production and supply chain, and the workshop and parts organisation. The complexity of the system as such is seen as too large of an obstacle.

Hydrogen has proven to be a serious alternative for (large) batteries, but TCO has to be reduced in order to reach a competitive level. Standard sized sub-systems are considered to be an important part of reaching this level of competitiveness. Standard sizes will improve reliability, parts availability, competition in the supply chain and above all a critical mass. These elements will also substantially lower the threshold for OEM’s and end users to adopt hydrogen as alternative for batteries.

The next step is real-world operation with heavy duty applications such as buses, trucks, tr... ver más

Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing consensus that (long haul) HD transport and HD stationary will be the key market for hydrogen Fuel Cells (FC) from the mid-2020s onwards. In addition, this transport sector struggles with the electrification of their portfolio. A large element is considered to be the consequence of theimpact on the production and supply chain, and the workshop and parts organisation. The complexity of the system as such is seen as too large of an obstacle.

Hydrogen has proven to be a serious alternative for (large) batteries, but TCO has to be reduced in order to reach a competitive level. Standard sized sub-systems are considered to be an important part of reaching this level of competitiveness. Standard sizes will improve reliability, parts availability, competition in the supply chain and above all a critical mass. These elements will also substantially lower the threshold for OEM’s and end users to adopt hydrogen as alternative for batteries.

The next step is real-world operation with heavy duty applications such as buses, trucks, trains, and ships in daily operation, all based upon the same technology and using the same supply chain to create a critical mass. Instead of demonstrating the technology, it is paramount to make FC applications economically feasible, by reaching ‘economy of scale’. This means FC system prices per kW and hydrogen prices per kg have to be reduced significantly by 3 to 5 times vs current levels. These figures are based on different TCO calculations (Euro/km or Euro/kg) which include all parameters (like operation and maintenance, lifetime etc.). To achieve 'economy of scale' with FC systems, they have to be standard sized and multi-purpose (not dedicated to only bus, truck or stationary). A standard size will be of benefit for the FC system supplier as well as for the FC system user. ‘Economy of Scale’ and ‘Fair Competition’ are the keywords for making hydrogen mobility economically feasible. In line with this, the challenge for this topic is based on three principles:

Hydrogen FC + BoP within a standard sized module (AA-Battery principle);Hydrogen-Electric mobility for HD (> 3.5 ton) and long haul transport (off-road, rail, water). HD requires efficient, flexible, available, reliable, durable, robust and widely serviceable solutions (according to the defined KPI’s);Hydrogen-Electric mobility TCO comparable (max +30%) with non-zero emission HD TCO.
Scope:The standard for the size, connections, Application Programming Interface (API) protocol and general test procedures of this FC module “frame” should be defined. Depending on the different HD market legislations, different options on the FC module “cover” could be implemented. This definition should be done no later than the end of project month 12 with an associated go/no-go decision gate on the following development to which at least 7 FC suppliers should commit to make their FC conform to this standard as part of this go/no go decision milestone:

At least 7 FC suppliers and 3 OEMs from at least two different HDV application sectors should participate in the standard definition process;The FC module should be around 30 to 100 kW net (max 1 stack power is 100-125 kW gross);The FC module should be specified so that it can be scaled up (as LEGO) to a minimum power level of 1 MW;The FC module should include at least the FC stack, the air supply system and the cooling/heating system without radiator;The maximum 3 standard mechanical size(s) should be equivalent to the common battery pack systems or the available space in the different HD applications. This should be done to make switching between full electric and FC applications more modular and cost effective;A minimum of 7 FC suppliers develop, build and commit their standard sized FC + BoP module according to the agreed standard (although FC stack development might be part of project, will not be considered within the scope of the topic and therefore not supported by funding). These FCs should be tested by an independent organisation according to an agreed protocol; the FC modules should be validated, according to an agreed test protocol, as whole FC module to make technical comparison between the different FC module suppliers easier for the different HD customers, without infringing the FC module supplier’s Intellectual Property (IP). The testing should be done on an independent reference test device.

The scope should also include some essential and critical aspects:

To define and specify together with the FC system suppliers and HD customers an International Standard module size, connections, API, test protocols and requirements for different HD applications;To define possible approaches on how to operate the modular systems in series/parallel up to a minimum of 1MW;To build standard sized FC modules from at least seven different FC suppliers (minimum five of them should be from EU);To develop and build a FC system reference test device for these modules, for testing on location and dynamically, by an independent organisation;To test the FC module(s) on the independent reference test device to get comparable/reproducible results and test the module also for durability purposes. The ultimate goal is to go from relatively small FC suppliers, each with their own specific customers/markets to a global FC module market with a larger choice of different suppliers for a wide range of new HD applications. This ‘Standard sized FC-module’ will also lower the threshold for industries that have not yet considered hydrogen as an energy source (due to scale, limited R&D budgets etc.). The FC system should evolve from a High-Tech experimental product today to a common easy to integrate energy module in a wide range of HD applications tomorrow.

TRL at start of the project: 5 and TRL at the end of the project: 6-7.

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected] , which manages the European hydrogen safety reference database, HIAD and the Hydrogen Event and Lessons LEarNed database, HELLEN. A draft safety plan at project level should be provided in the proposal and further updated during project implementation (deliverable to be reviewed by the European Hydrogen Safety Panel (EHSP)).

Activities developing test protocols and procedures for the performance and durability assessment of fuel cell components should foresee a collaboration mechanism with JRC (see section 3.2.B "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published FCH 2 JU harmonized testing protocols to benchmark performance and quantify progress at programme level.

The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.

Expected duration: 3 years


Expected Impact:The aim of the topic is to create a plug-and-play FC module that can take the ‘Hydrogen Economy’ out of the vicious circle and into 'Economy of Scale'. Some overall expected impacts could be:

Economy of Scale (Stack and BoP) and Fair Competition (by reducing TCO);Expected increase in sales, markets and applications including easier logistics for parts and services;A standard sized module which will further optimize (simplify) the FC system design and manufacturability; investments in developments and automated production can be justified;Future technology improvements can be made and easily integrated without big changes on the application side (size and interfacing);The user application can be designed to the needed power by adding extra FC modules and without to be bounded to a specific FC system supplier;The FC module specifications can be described using agreed and validated test protocols;The FC module can be used as H2-Range Extender or as H2-Hybrid now or later as upgrade;When more than 1 FC module is used, availability through redundancy can be achieved; the plug-and-play requirement should reduce the operational downtime to a minimum by swopping units; specialists repair can be centralized. As the maximum 3 standard size(s) and connections are to be defined:

The FC module supplier and the HD customers can independently from each other develop their Zero Emission product/application;The HD customers can freely and easily switch between the FC module suppliers;No FC module supplier should need to share any of their IP; all the IP is inside their FC module: Inside the module the FC system supplier will use its own IP while outside it is a standard sized plug-and-play module;New developments and optimisation of the FC module can be done within these agreed specifications without changing the HD application itself. Standard sized modules will contribute by the fact that developments will shift from technology into applications (based on modules and high volumes) and thus should accelerate the use of hydrogen, resulting also in the needed reduction of costs. The end goal is to make hydrogen for Heavy Duty applications economical viable without funding’s in the next 5-10 years.

The conditions related to this topic are provided in the chapter 3.3 of the FCH2 JU 2020 Annual Work Plan and in the General Annexes to the Horizon 2020 Work Programme 2018– 2020 which apply mutatis mutandis.


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing consensus that (long haul) HD transport and HD stationary will be the key market for hydrogen Fuel Cells (FC) from the mid-2020s onwards. In addition, this transport sector struggles with the electrification of their portfolio. A large element is considered to be the consequence of theimpact on the production and supply chain, and the workshop and parts organisation. The complexity of the system as such is seen as too large of an obstacle. Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing consensus that (long haul) HD transport and HD stationary will be the key market for hydrogen Fuel Cells (FC) from the mid-2020s onwards. In addition, this transport sector struggles with the electrification of their portfolio. A large element is considered to be the consequence of theimpact on the production and supply chain, and the workshop and parts organisation. The complexity of the system as such is seen as too large of an obstacle.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonst...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonstration of FC Coaches for regional passenger transport
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-6-2020: Demonstration of liquid hydrogen as a fuel for segments of the waterborne sector
The maximum FCH 2 JU contribution that may be requested is EUR 8 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-7-2020: Extending the use cases for FC trains through innovative designs and streamlined administrative framework
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-8-2020: Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
The maximum FCH 2 JU contribution that may be requested is EUR 3 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-5-2020: Underground storage of renewable hydrogen in depleted gas fields and other geological stores
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-6-2020: Electrolyser module for offshore production of renewable hydrogen
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-7-2020: Cyclic testing of renewable hydrogen storage in a small salt cavern
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-8-2020: Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-9-2020: Fuel cell for prime power in data-centres
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-03-2-2020: Decarbonising islands using renewable energies and hydrogen - H2 Islands
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
 
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Other conditions: For all actions of the call, the FCH 2 JU will activate the option for EU grants indicated under Article 30.3 of the Model Grant Agreement, regarding the FCH 2 JU’s right to object to transfers or licensing of results.
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan and its addendum
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2020-1 Standard Sized FC module for Heavy Duty applications Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing co...
Sin info.
FCH-01-4-2020 Standard Sized FC module for Heavy Duty applications
en consorcio: Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing co...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-8-2020 Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
en consorcio: Specific Challenge:Hydrogen compression remains a major bottleneck in the development of the refuelling infrastructure for H2 mobility. The...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-5-2020 Demonstration of FC Coaches for regional passenger transport
en consorcio: Specific Challenge:For intercity and long-distance transport of passengers, coaches are used normally. About 20% of all registered buses for...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-3-2020 Liquid Hydrogen on-board storage tanks
en consorcio: Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 s...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-1-2020 Development of hydrogen tanks for electric vehicle architectures
en consorcio: Specific Challenge:It is expected that vehicle architectures will change significantly in the next few years due to major trends in the auto...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de