Innovating Works
FCH-01-3-2020
FCH-01-3-2020: Liquid Hydrogen on-board storage tanks
Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 storage system density. The length and height of road vehicles in EU are limited to 16.5m and 4m, respectively. As a consequence, truck manufacturers have to choose between less payload (since a bulky H2 takes valuable space away from the cargo) and less range when designing H2 vehicles. The range limitation is less critical for fleet trucks with short routes: 350 bar H2 storage seems to be sufficient for municipal vehicles, buses and even parcel delivery trucks. For trucking applications with larger payload and less dense HRS network, for instance regional and long haul, other solutions need to be investigated. Pressures of 500 to 700 bar indeed offer more volumetric capacity (more than 20 to 45% over 350 bar) but these solutions are costly and bring in hurdles on the infrastructure where large capacities need to be dispensed rapidly, while controlling the inlet temperature and allowing high station demand (“back-to-back”).
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 29-04-2020.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Hace más de 59 mes(es) del cierre y aún no tenemos información sobre los proyectos financiados, no parece que se vaya a publicar esta información.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 storage system density. The length and height of road vehicles in EU are limited to 16.5m and 4m, respectively. As a consequence, truck manufacturers have to choose between less payload (since a bulky H2 takes valuable space away from the cargo) and less range when designing H2 vehicles. The range limitation is less critical for fleet trucks with short routes: 350 bar H2 storage seems to be sufficient for municipal vehicles, buses and even parcel delivery trucks. For trucking applications with larger payload and less dense HRS network, for instance regional and long haul, other solutions need to be investigated. Pressures of 500 to 700 bar indeed offer more volumetric capacity (more than 20 to 45% over 350 bar) but these solutions are costly and bring in hurdles on the infrastructure where large capacities need to be dispensed rapidly, while controlling the inlet temperature and allowing high station demand (“back-to-back”).

350/700 bar storage requires compression and high-pressure storage at the hydrogen station, which takes footp... ver más

Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 storage system density. The length and height of road vehicles in EU are limited to 16.5m and 4m, respectively. As a consequence, truck manufacturers have to choose between less payload (since a bulky H2 takes valuable space away from the cargo) and less range when designing H2 vehicles. The range limitation is less critical for fleet trucks with short routes: 350 bar H2 storage seems to be sufficient for municipal vehicles, buses and even parcel delivery trucks. For trucking applications with larger payload and less dense HRS network, for instance regional and long haul, other solutions need to be investigated. Pressures of 500 to 700 bar indeed offer more volumetric capacity (more than 20 to 45% over 350 bar) but these solutions are costly and bring in hurdles on the infrastructure where large capacities need to be dispensed rapidly, while controlling the inlet temperature and allowing high station demand (“back-to-back”).

350/700 bar storage requires compression and high-pressure storage at the hydrogen station, which takes footprint and important CAPEX/OPEX. Those will not be needed for LH2 on-board, which require solely a LH2 tank and a transfer pump in addition to dispenser(s), allowing to save costs on the whole H2 chain. No industrial actors or consortia have started to develop consistently such technology in the world. Actors of the EU industry are currently well positioned and by pursuing this activity, have the potential to become world leaders.

Storing LH2 (Liquid Hydrogen) on-board offers unprecedented storage density (two times more compared to 700 bar) while greatly improving the cost and complexity of high-throughput gaseous H2 refuelling stations. Even though on-board LH2 storage has been disregarded for light-duty vehicles (see the example of BMW 7 Hydrogen mini-series in 2005-2007 [25]), its relevance for applications that require larger capacities (40 to more than 100kg H2) and that experience much more utilization (more than 100,000 km/year) deserve to be carefully evaluated.

LH2 tanks have been used as stationary storage in industrial facilities, and of course in various space programs, for half a century. However, no on-board LH2 storage for transportation vehicles exists today. The on-board environment has very unique challenges for LH2: insulation optimization vs. gravimetric, functional, mechanical and safety requirements, fluid regulations for various modes (acceleration, parking refuelling etc.), compliance with stringent regulations and end-user interface.

[25]: For reference, estimated performances for the BMW 7 LH2 storage system are 9% wtH2 and 40 gH2/L for a capacity of 8 kg H2


Scope:The objective is to evaluate the feasibility of using LH2 for heavy-duty vehicles through a design study followed by a demonstration test bench. The first phase of this effort will consist of mechanical and fluid design. This will include an investigation from the end-user perspective, by simulating real-life utilization (H2 extraction, driving, parking and refuelling) and making sure that the state-of-charge, the actual boil-off and the refuelling are compatible with the expectations. A few configurations will be used as benchmark: rail mounting, behind cab, and within frame. The overall shape of the storage system is important, and advanced storage solutions to optimize the energy density (through e.g. a single vacuum jacket with multiple cylinders) should be investigated. The mechanical design should meet all requirements typical of the trucking industry in terms of durability, exposure to harsh environments, vibrations, accelerations, safeties. Pressure in the LH2 storage tank should be compatible with the pressure at which the fuel cell typically operates. Alternatively, mitigation strategies should be proposed.

The nominal target capacity considered in the scope of this topic is 40-100 kg LH2, with gravimetric and volumetric (usable) system densities of 10% wt H2 and 45 g H2/L for a 24 to 72 hour-dormancy, boil-off rates < 5%/day and compatibility with fuelling rates of up to 10 kg/min.

All the activities should consider the current EC79/200926 (liquid hydrogen storage systems) and other relevant standards. Refuelling technologies are not within the scope of this topic, although the prototype should be compatible with an efficient refuelling process. The consortium should establish links with ongoing projects dedicated to relevant applications such as H2HAUL27 and future project under ongoing FCH 2 JU call 2019 “Topic FCH-04-2-2019: Refuelling Protocols for Medium and Heavy-Duty Vehicles”.

TRL at start of the project: 4 and TRL at the end of the project: 5.

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected] , which manages the European hydrogen safety reference database, HIAD and the Hydrogen Event and Lessons LEarNed database, HELLEN.

The FCH 2 JU considers that proposals requesting a contribution from the EU of EUR 2 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected duration: 3 years


Expected Impact:The much greater intrinsic energy density of LH2 (70 g/L) compared to 350 bar (24 g/L) and 700 bar (40 g/L) enables to increase dramatically the autonomy of the vehicle, and come closer to LNG truck autonomy; also reducing the overall number of hydrogen stations needed, and hence the average hydrogen cost at the pump.

The following KPIs should be reached by the end of the project:

CAPEX storage tank: €320/kg H2;Volumetric capacity at tank system level: 0.045kg/L28;Gravimetric capacity at tank system level: 10% (H2/(H2+tank system)). In addition, although not addressed in this topic, it should contribute to pave the way towards the following KPIs on the infrastructure side as LH2 on-board storage solutions mature: station energy consumption of 0.05kWh/kg and CAPEX HRS: 2M€ @2t/day.

This project should represent the first step towards large adoption of the on-board LH2 technology and the creation of related standardized refuelling protocols. By enabling longer haul applications and cheaper cost of hydrogen at the pump, the LH2 on-board technology should enable larger scale deployments of hydrogen trucks than with state of the art storage methods, thus proving as unavoidable for zero emission heavy-duty transportation.

The conditions related to this topic are provided in the chapter 3.3 of the FCH2 JU 2020 Annual Work Plan and in the General Annexes to the Horizon 2020 Work Programme 2018– 2020 which apply mutatis mutandis.


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 storage system density. The length and height of road vehicles in EU are limited to 16.5m and 4m, respectively. As a consequence, truck manufacturers have to choose between less payload (since a bulky H2 takes valuable space away from the cargo) and less range when designing H2 vehicles. The range limitation is less critical for fleet trucks with short routes: 350 bar H2 storage seems to be sufficient for municipal vehicles, buses and even parcel delivery trucks. For trucking applications with larger payload and less dense HRS network, for instance regional and long haul, other solutions need to be investigated. Pressures of 500 to 700 bar indeed offer more volumetric capacity (more than 20 to 45% over 350 bar) but these solutions are costly and bring in hurdles on the infrastructure where large capacities need to be dispensed rapidly, while controlling the inlet temperature and allowing high station demand (“back-to-back”). Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 storage system density. The length and height of road vehicles in EU are limited to 16.5m and 4m, respectively. As a consequence, truck manufacturers have to choose between less payload (since a bulky H2 takes valuable space away from the cargo) and less range when designing H2 vehicles. The range limitation is less critical for fleet trucks with short routes: 350 bar H2 storage seems to be sufficient for municipal vehicles, buses and even parcel delivery trucks. For trucking applications with larger payload and less dense HRS network, for instance regional and long haul, other solutions need to be investigated. Pressures of 500 to 700 bar indeed offer more volumetric capacity (more than 20 to 45% over 350 bar) but these solutions are costly and bring in hurdles on the infrastructure where large capacities need to be dispensed rapidly, while controlling the inlet temperature and allowing high station demand (“back-to-back”).
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonst...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonstration of FC Coaches for regional passenger transport
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-6-2020: Demonstration of liquid hydrogen as a fuel for segments of the waterborne sector
The maximum FCH 2 JU contribution that may be requested is EUR 8 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-7-2020: Extending the use cases for FC trains through innovative designs and streamlined administrative framework
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-8-2020: Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
The maximum FCH 2 JU contribution that may be requested is EUR 3 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-5-2020: Underground storage of renewable hydrogen in depleted gas fields and other geological stores
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-6-2020: Electrolyser module for offshore production of renewable hydrogen
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-7-2020: Cyclic testing of renewable hydrogen storage in a small salt cavern
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-8-2020: Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-9-2020: Fuel cell for prime power in data-centres
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-03-2-2020: Decarbonising islands using renewable energies and hydrogen - H2 Islands
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
 
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Other conditions: For all actions of the call, the FCH 2 JU will activate the option for EU grants indicated under Article 30.3 of the Model Grant Agreement, regarding the FCH 2 JU’s right to object to transfers or licensing of results.
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan and its addendum
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2020-1 Liquid Hydrogen on-board storage tanks Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 s...
Sin info.
FCH-01-4-2020 Standard Sized FC module for Heavy Duty applications
en consorcio: Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing co...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-01-8-2020 Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
en consorcio: Specific Challenge:Hydrogen compression remains a major bottleneck in the development of the refuelling infrastructure for H2 mobility. The...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-01-5-2020 Demonstration of FC Coaches for regional passenger transport
en consorcio: Specific Challenge:For intercity and long-distance transport of passengers, coaches are used normally. About 20% of all registered buses for...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-01-3-2020 Liquid Hydrogen on-board storage tanks
en consorcio: Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 s...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-01-1-2020 Development of hydrogen tanks for electric vehicle architectures
en consorcio: Specific Challenge:It is expected that vehicle architectures will change significantly in the next few years due to major trends in the auto...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de