Innovating Works
FCH-01-3-2016
FCH-01-3-2016: PEMFC system manufacturing technologies and quality assurance
Specific Challenge:Currently, most fuel cell systems and their key components are produced in small quantities, often with considerable manual input and not optimized for low cycle times implying the corresponding high production cost and quality deficits. The core components are currently niche products with high complexity to produce and industry has little at-scale manufacturing experience. In order to achieve cost levels allowing for market deployment, fuel cell systems need further significant cost reductions in several areas including development, manufacturing, tooling and assembling. However, today, low production volumes – sometimes on a prototype level – do not provide the economical drive for the identification, improvement and validation of all factors that influence the robustness and yield of the manufacturing processes at system level.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 03-05-2016.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Currently, most fuel cell systems and their key components are produced in small quantities, often with considerable manual input and not optimized for low cycle times implying the corresponding high production cost and quality deficits. The core components are currently niche products with high complexity to produce and industry has little at-scale manufacturing experience. In order to achieve cost levels allowing for market deployment, fuel cell systems need further significant cost reductions in several areas including development, manufacturing, tooling and assembling. However, today, low production volumes – sometimes on a prototype level – do not provide the economical drive for the identification, improvement and validation of all factors that influence the robustness and yield of the manufacturing processes at system level.


Scope:This topic addresses process development of critical steps of PEMFC system manufacturing, including the production of component engineering samples. The fuel cell stack and stack component manufacturing is explicitly excluded from this topic since it is addressed in topic FCH-01.1-2016. The overall process ch... ver más

Specific Challenge:Currently, most fuel cell systems and their key components are produced in small quantities, often with considerable manual input and not optimized for low cycle times implying the corresponding high production cost and quality deficits. The core components are currently niche products with high complexity to produce and industry has little at-scale manufacturing experience. In order to achieve cost levels allowing for market deployment, fuel cell systems need further significant cost reductions in several areas including development, manufacturing, tooling and assembling. However, today, low production volumes – sometimes on a prototype level – do not provide the economical drive for the identification, improvement and validation of all factors that influence the robustness and yield of the manufacturing processes at system level.


Scope:This topic addresses process development of critical steps of PEMFC system manufacturing, including the production of component engineering samples. The fuel cell stack and stack component manufacturing is explicitly excluded from this topic since it is addressed in topic FCH-01.1-2016. The overall process chain must be considered for sake of the analysis of cycle time, covering the complete value chain including the development of inline non-destructive control tools in order to reduce the amount of defected components. Potential project proposals should have the main focus on the development of manufacturing technologies specific to PEMFC system and system components for transport applications. Demonstrations of full pilot lines are excluded.

The scope of this topic is to enable established PEMFC OEMs and component suppliers in the fuel cell industry to implement technologies enabling the step-up from small scale production towards higher volumes (50,000 systems/year in 2020) which will result in the reduced cost of PEMFC technologies. The topic should also develop simpler tooling/ manufacturing technologies, making it easier for other players to enter the PEMFC system component industry, thus expanding and making the component supplier base more robust and competitive.

The scope of this topic is, moreover, to focus on improving the system production processes with respect to cost, cycle time and quality. Proposals should focus on developing high volume manufacturing technologies, modifying system components for improved manufacturability as well as quality assurance. System components such as compressors, heat exchangers, actuators and sensors should be the focus of the proposal. Critical bottlenecks in the fuel cell system assembly, e.g. end-of-line testing can also be addressed.

The successful consortium must show evidence that critical bottlenecks specifically related to the fuel cell system and system component manufacturing are addressed. The minimum TRL for fuel cell systems and system components is 5.

Projects should achieve at least a manufacturing readiness level, MRL of 7* (Capability to produce systems, subsystems or components in a production representative environment) at project end, starting from a MRL of 5 (Capability to produce prototype components in a production relevant environment).

To demonstrate advancement with respect to the state-of-the-art on four critical parameters: cycle time, manufacturing cost, yield and reliability of the production process, project proposals are expected to cover the following top-level objectives:

Development of manufacturing technologies, beyond state of the art, specific to the PEMFC system production processes, equipment and tools Transpose established automotive industry best practices on production and quality to the manufacturing of PEMFC system and system components, such as (but not limited to) lean manufacturing, Kaisen, six sigma Identification of bottleneck processes in system or system component production lines Identification and revision of critical sub-processes (e.g. low yield/high cost) Improvement, modification, adaptation or even new development of at least two critical system or system component production steps Integration of inline non-destructive quality control tools Adaptation of system and/or system components design to optimize manufacturability Development of QA strategies relevant for the transport sector compatible with ISO/TS 16949 The FCH 2 JU considers that proposals requesting a contribution from the EU of EUR 3 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected duration: 3-4 years

A maximum of 2 projects may be funded under this topic.

*For more information on the use of MRL in this topic, please see Section 3.3 Call management rules


Expected Impact:Expected impacts of the project include:

Taking into account the KPIs achieved within the project, such as yield, cycle time and production capacity, demonstrate through simulation that with the improvements in the production process and product, the PEMFC system production can be increased from few 100 units/year up to 50.000 units/year in 2020, for a total power range about 5 MW per year with a single line. Produce and validate engineering samples of the improved design for manufacturability of at least one relevant component, including its product validation. Validate in hardware, with cycle time measurement, cost analysis and statistical evaluation, the performance of the improved system or system component production steps. Validate the performance of the full system (or system component) production in an existing production line upgraded with the optimized process steps. Achieve components yields > 95% for the improved system component production steps Feedback the project results into future system component development.
ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Currently, most fuel cell systems and their key components are produced in small quantities, often with considerable manual input and not optimized for low cycle times implying the corresponding high production cost and quality deficits. The core components are currently niche products with high complexity to produce and industry has little at-scale manufacturing experience. In order to achieve cost levels allowing for market deployment, fuel cell systems need further significant cost reductions in several areas including development, manufacturing, tooling and assembling. However, today, low production volumes – sometimes on a prototype level – do not provide the economical drive for the identification, improvement and validation of all factors that influence the robustness and yield of the manufacturing processes at system level. Specific Challenge:Currently, most fuel cell systems and their key components are produced in small quantities, often with considerable manual input and not optimized for low cycle times implying the corresponding high production cost and quality deficits. The core components are currently niche products with high complexity to produce and industry has little at-scale manufacturing experience. In order to achieve cost levels allowing for market deployment, fuel cell systems need further significant cost reductions in several areas including development, manufacturing, tooling and assembling. However, today, low production volumes – sometimes on a prototype level – do not provide the economical drive for the identification, improvement and validation of all factors that influence the robustness and yield of the manufacturing processes at system level.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Please read carefully all provisions below before the preparation of your application.
 
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects (follow the links to China, Japan, Republic of Korea, Mexico, Russia, Taiwan).
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme. The following exceptions apply (see 'chapter 3.3. Call management rules' from the AWP2016 and specific topic description):  'For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium.'
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme. As part of the Panel Review, hearings will be organised for Innovation Actions (IA) proposals. 
3.2 S...
Please read carefully all provisions below before the preparation of your application.
 
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects (follow the links to China, Japan, Republic of Korea, Mexico, Russia, Taiwan).
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme. The following exceptions apply (see 'chapter 3.3. Call management rules' from the AWP2016 and specific topic description):  'For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium.'
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme. As part of the Panel Review, hearings will be organised for Innovation Actions (IA) proposals. 
3.2 Submission and evaluation process: Guide to the submission and evaluation process
      
Indicative timetable for evaluation and grant agreement:
Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
Provisions, proposal templates and evaluation forms for the type(s) of action(s) under this topic:
FCH2 JU Research and Innovation Action (FCH2-RIA):
Specific provisions and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH2 JU Model Grant Agreement
Annotated Grant Agreement
 
Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply.
Financial support to Third Parties – where a topic description foresees financial support to Third Parties, these provisions apply.
 
Open access must be granted to all scientific publications resulting from Horizon 2020 actions, and proposals must refer to measures envisaged. Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
 
Additional documents:
FCH2 JU 2016 Work Plan
FCH2 JU Multi Annual Work Plan
FCH2 JU – Regulation of establishment
H2020 Work Programme 2016-17: General Annexes
Legal basis: Horizon 2020 - Regulation of Establishment
Legal basis: Horizon 2020 Rules for Participation
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2016-1 PEMFC system manufacturing technologies and quality assurance Specific Challenge:Currently, most fuel cell systems and their key components are produced in small quantities, often with considerable manu...
Sin info.
FCH-01-4-2020 Standard Sized FC module for Heavy Duty applications
en consorcio: Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing co...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-8-2020 Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
en consorcio: Specific Challenge:Hydrogen compression remains a major bottleneck in the development of the refuelling infrastructure for H2 mobility. The...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-5-2020 Demonstration of FC Coaches for regional passenger transport
en consorcio: Specific Challenge:For intercity and long-distance transport of passengers, coaches are used normally. About 20% of all registered buses for...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-3-2020 Liquid Hydrogen on-board storage tanks
en consorcio: Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 s...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-1-2020 Development of hydrogen tanks for electric vehicle architectures
en consorcio: Specific Challenge:It is expected that vehicle architectures will change significantly in the next few years due to major trends in the auto...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de