Innovating Works
FCH-01-5-2018
FCH-01-5-2018: Next generation automotive MEA development
Specific Challenge:Cost still remains one of the key challenges for widespread adoption of Proton Exchange Membrane Fuel Cell (PEMFC ) technology in the automotive sector. The stack still represents about 50% of total fuel cell system cost and MEA components ca. 60% of the total stack cost. Therefore, despite considerable progress over the last 10 years in increasing performance, durability and reducing platinum loadings, research and development activities are still required to provide materials and designs that can address the cost issue whilst reaching other important targets like durability, reliability and operating temperature.Additionally, even though several materials were developed that meet performance at BOL, they tend to degrade rapidly and have other issues (e.g. power instability at lower temperatures). Thus, the purpose of this topic is to address these issues by focusing on MEA development to meet all the requirements at the same time, with a greater focus on achieving a world leading power density of 1.8 W/cm2 @ 0.60 V.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 24-04-2018.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Cost still remains one of the key challenges for widespread adoption of Proton Exchange Membrane Fuel Cell (PEMFC ) technology in the automotive sector. The stack still represents about 50% of total fuel cell system cost and MEA components ca. 60% of the total stack cost. Therefore, despite considerable progress over the last 10 years in increasing performance, durability and reducing platinum loadings, research and development activities are still required to provide materials and designs that can address the cost issue whilst reaching other important targets like durability, reliability and operating temperature.Additionally, even though several materials were developed that meet performance at BOL, they tend to degrade rapidly and have other issues (e.g. power instability at lower temperatures). Thus, the purpose of this topic is to address these issues by focusing on MEA development to meet all the requirements at the same time, with a greater focus on achieving a world leading power density of 1.8 W/cm2 @ 0.60 V.


Scope:As a step towards the final cost goal, proposals should focus on reducing the total platinum loading compared to current... ver más

Specific Challenge:Cost still remains one of the key challenges for widespread adoption of Proton Exchange Membrane Fuel Cell (PEMFC ) technology in the automotive sector. The stack still represents about 50% of total fuel cell system cost and MEA components ca. 60% of the total stack cost. Therefore, despite considerable progress over the last 10 years in increasing performance, durability and reducing platinum loadings, research and development activities are still required to provide materials and designs that can address the cost issue whilst reaching other important targets like durability, reliability and operating temperature.Additionally, even though several materials were developed that meet performance at BOL, they tend to degrade rapidly and have other issues (e.g. power instability at lower temperatures). Thus, the purpose of this topic is to address these issues by focusing on MEA development to meet all the requirements at the same time, with a greater focus on achieving a world leading power density of 1.8 W/cm2 @ 0.60 V.


Scope:As a step towards the final cost goal, proposals should focus on reducing the total platinum loading compared to current state of the art MEAs (currently in the range of 0.25 to 0.35 mg/cm2) and increasing current density to levels that enable a significant reduction of the total stack active area.As the targets are very ambitious, the proposals will need to address several areas of development at the same time, which will include work on the following areas:

Catalyst: Development of new catalysts with higher mass-specific activity, durability and active surface area. The catalyst has to be capable of being integrated in a layer that allows operation at higher current densities;Catalyst Support: Development of corrosion resistant supports which promote optimal layer ionomer distribution and operation at high current densities. These supports have also to meet the durability requirements during dynamic operating conditions, such as start-stop, that lead to high potentials;Catalyst layer Design: New electrode designs, structured layers and additives to improve performance at high current density and increase durability. Focus to be placed on minimization of mass transport losses while ensuring manufacturability of the layer;Catalyst Layer ionomer: Ionomers with higher protonic conductivity, higher permeability to O2 and stable behaviour at low RH (<50% RH) and high temperatures (80 - 110 °C);Membrane: Durable membranes with reduced gas crossover and viable operation at higher temperature (to 110 °C), displaying the proton conductivity of currently available ionomers, or better, and mechanically and chemically stable under RH cycling and OCV conditions;GDL (including MPL): Development of high through-plane thermal conductivity GDLs to enable low local temperatures at the catalyst layers. Higher in-plane diffusivity GDLs are also desired to reduce the effect of wide landings on bipolar plates. A combination of GDL properties are desired, including reduced thickness, to achieve optimum contact resistance, gas flows under the landings, water management and thermal conduction. Development of MPLs designed for high current densities but with a good balance of water management properties at low temperatures and current densities is needed;MEA Integration: In addition to incorporating the new component materials into MEAs, it is also within the scope to consider alternative MEA designs, constructions, and deposition and assembly approaches that can contribute to the achievement of the project objectives. Novel designs should maximize the effective use of the constituent materials, enable tailoring to the stack design and minimize the interfacial losses, thereby contributing to the increased performance and reduced cost objectives. This has been addressed in the paragraph below dealing with the output of the project. The proposal should set targets for each individual component. Those targets need to be quantifiable in single cells relevant for automotive application. The consortium has to demonstrate how the targets have been fixed and how those targets will allow the MEA to achieve the required power density (1.8 W/cm2 @ 0.6 V) in the described operating conditions (already described above).The output of the project should be a sufficient numbers of MEAs incorporating the new constituent materials and designs that are manufactured by a commercial supplier, by methods compatible with high-volume manufacturing, (but not necessarily using processes already validated for the fuel cell industry), to enable a short-stack test (minimum 10 Cells) of a practical automotive fuel cell.A cost estimation with assumptions on the quantity of materials, material costs and production costs of the MEA is also expected as an output at the end of the project.Development of bipolar plates, seals, frame/sub-gasket materials and designs are not in scope of this topic.TRL at start: 2-3 and TRL at the end of the project: 5.The proposal is expected to contain at least one OEM as a partner, to provide system and fuel cell design points and counsel on trade off studies. Similarly, to fulfil the manufacturability requirement, it is expected that at least one MEA supplier to be part of the proposal.Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected], which manages the European hydrogen safety reference database, HIAD.Test activities should collaborate and use the protocols developed by the JRC Harmonisation Roadmap (see section 3.2.B "Collaboration with JRC – Rolling Plan 2018"), in order to benchmark performance of components and allow for comparison across different projects.

The FCH 2 JU considers that proposals requesting a contribution of EUR 4 million would allow the specific challenges to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.Expected duration: 3-4 Years


Expected Impact:The proposed development activities shall reach the following collective targets, demonstrated at MEA level:

Decreased MEA cost: target MEA cost of 6.0 € /kW based on a production volume of 1 Million m2 per year, assuming Pt spot price of 1,200 €/ troy Oz;Increased power density: target power density of 1.80 W/cm2 (reference cell voltage: 0.60 V) using Autostack Core bipolar plate as reference (which is commercially available, or a similar bipolar plate with at least 200 cm2, realized as an outcome of a previous FCH 2 JU project). For reproducibility reasons, it is expected that a short stack with a minimum of 10 cells is tested. Operating conditions should be defined by the consortium partners but are recommended to be within the following limits: Pressure: inlet PCath,An<2.5 bar;Stoichiometry: 1.3 < λCath,An < 1.5;Humidity: 30% ver menos

Temáticas Obligatorias del proyecto: Temática principal: Materials engineering Fuel cell technology Electrochemistry batteries and fuel cells

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Cost still remains one of the key challenges for widespread adoption of Proton Exchange Membrane Fuel Cell (PEMFC ) technology in the automotive sector. The stack still represents about 50% of total fuel cell system cost and MEA components ca. 60% of the total stack cost. Therefore, despite considerable progress over the last 10 years in increasing performance, durability and reducing platinum loadings, research and development activities are still required to provide materials and designs that can address the cost issue whilst reaching other important targets like durability, reliability and operating temperature.Additionally, even though several materials were developed that meet performance at BOL, they tend to degrade rapidly and have other issues (e.g. power instability at lower temperatures). Thus, the purpose of this topic is to address these issues by focusing on MEA development to meet all the requirements at the same time, with a greater focus on achieving a world leading power density of 1.8 W/cm2 @ 0.60 V. Specific Challenge:Cost still remains one of the key challenges for widespread adoption of Proton Exchange Membrane Fuel Cell (PEMFC ) technology in the automotive sector. The stack still represents about 50% of total fuel cell system cost and MEA components ca. 60% of the total stack cost. Therefore, despite considerable progress over the last 10 years in increasing performance, durability and reducing platinum loadings, research and development activities are still required to provide materials and designs that can address the cost issue whilst reaching other important targets like durability, reliability and operating temperature.Additionally, even though several materials were developed that meet performance at BOL, they tend to degrade rapidly and have other issues (e.g. power instability at lower temperatures). Thus, the purpose of this topic is to address these issues by focusing on MEA development to meet all the requirements at the same time, with a greater focus on achieving a world leading power density of 1.8 W/cm2 @ 0.60 V.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):
- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):
- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2018-1 Next generation automotive MEA development Specific Challenge:Cost still remains one of the key challenges for widespread adoption of Proton Exchange Membrane Fuel Cell (PEMFC ) techn...
Sin info.
FCH-01-4-2020 Standard Sized FC module for Heavy Duty applications
en consorcio: Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing co...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-8-2020 Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
en consorcio: Specific Challenge:Hydrogen compression remains a major bottleneck in the development of the refuelling infrastructure for H2 mobility. The...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-5-2020 Demonstration of FC Coaches for regional passenger transport
en consorcio: Specific Challenge:For intercity and long-distance transport of passengers, coaches are used normally. About 20% of all registered buses for...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-3-2020 Liquid Hydrogen on-board storage tanks
en consorcio: Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 s...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-01-1-2020 Development of hydrogen tanks for electric vehicle architectures
en consorcio: Specific Challenge:It is expected that vehicle architectures will change significantly in the next few years due to major trends in the auto...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de