Innovating Works
FCH-01-2-2018
FCH-01-2-2018: Demonstration of Fuel Cell applications for mid-size passenger ships or inland freight
Specific Challenge:While emission regulations have been enforced in road transport for more than 2 decades, maritime transport is still, largely, utilising heavy fuel oil and high sulphur containing diesel. In cities with major harbours, maritime transport is today contributing significantly to air pollution.Emission Control Areas (ECAs) are defined in the North and Baltic Sea (requiring the use of low-sulphur diesel) and along the North American coastline. ECA regulations have been proposed also for e.g., the Mediterranean Sea, and the coastlines of Australia, Japan and Norway. To comply with these more stringent local emission regulations, conventional propulsion systems based on internal combustion engines (ICEs) are subject to installing costly exhaust cleaning technologies.Moreover, European GHG emission targets for 2030 along with the ambitions of shifting especially freight from road to rail and sea underlines the urgency of introducing low and 0-emission solutions also for maritime transport. Some European cities (e.g., Amsterdam) have already announced 0-emission requirements for cruise-ships in harbour within 2025. Environmental legislation designed to reduce emissions across the maritime industry is hence placing higher demands for compliance upon ship owners and operators.Consequently, conventional ICE-based drivelines are currently being hybridized with batteries for reducing fuel consumption and the high local emission from ICE drivelines operating at part load. Liquefied Natural Gas (LNG) as a marine fuel constitutes a commercially available solution, which is almost eliminating local emissions (SOx, NOx, PM). Replacing diesel with LNG may reduce CO2-emissions by 15-20%, but this is not compliant with the 40 % GHG reduction ambitions for 2030.A first generation of pure battery-electric ships have been introduced in recent years. The largest to date is the 1 MW ferry boat Ampere which has been in operation since early 2015 in Norway. However, battery-electric ships have limited range, long charging time and require a high capacity grid connection. In that respect hydrogen and FC technology represents a promising option.FCs have been demonstrated for propulsion in several smaller slow speed vessels. PEMFCs and hydrogen as fuel is dominating and the power range is typically up to 100 kW. Lately, several initiatives have been taken for utilising FCs at higher power ranges and in high-speed vessels. Leading FC suppliers are now adapting MW-scale FC systems for maritime use. For wide deployment of FC technologies in maritime transport there is, however, still a series of specific challenges which needs to be addressed, including durability, system power density for high speed vessels, compatibility with maritime conditions (saline air, shock, rolling & vibration), high volume bunkering, regulations, codes and standards (incl. redundancy), and public acceptance.
Sólo fondo perdido 0 €
European
This call is closed This line is already closed so you can't apply. It closed last day 24-04-2018.
An upcoming call for this aid is expected, the exact start date of call is not yet clear.
Luckily, we have achieved the list of financed projects!
Presentation: Consortium Consortium: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Minimum number of participants.
This aid finances Proyectos: project objective:

Specific Challenge:While emission regulations have been enforced in road transport for more than 2 decades, maritime transport is still, largely, utilising heavy fuel oil and high sulphur containing diesel. In cities with major harbours, maritime transport is today contributing significantly to air pollution.Emission Control Areas (ECAs) are defined in the North and Baltic Sea (requiring the use of low-sulphur diesel) and along the North American coastline. ECA regulations have been proposed also for e.g., the Mediterranean Sea, and the coastlines of Australia, Japan and Norway. To comply with these more stringent local emission regulations, conventional propulsion systems based on internal combustion engines (ICEs) are subject to installing costly exhaust cleaning technologies.Moreover, European GHG emission targets for 2030 along with the ambitions of shifting especially freight from road to rail and sea underlines the urgency of introducing low and 0-emission solutions also for maritime transport. Some European cities (e.g., Amsterdam) have already announced 0-emission requirements for cruise-ships in harbour within 2025. Environmental legislation designed to reduce emissions ac... see more

Specific Challenge:While emission regulations have been enforced in road transport for more than 2 decades, maritime transport is still, largely, utilising heavy fuel oil and high sulphur containing diesel. In cities with major harbours, maritime transport is today contributing significantly to air pollution.Emission Control Areas (ECAs) are defined in the North and Baltic Sea (requiring the use of low-sulphur diesel) and along the North American coastline. ECA regulations have been proposed also for e.g., the Mediterranean Sea, and the coastlines of Australia, Japan and Norway. To comply with these more stringent local emission regulations, conventional propulsion systems based on internal combustion engines (ICEs) are subject to installing costly exhaust cleaning technologies.Moreover, European GHG emission targets for 2030 along with the ambitions of shifting especially freight from road to rail and sea underlines the urgency of introducing low and 0-emission solutions also for maritime transport. Some European cities (e.g., Amsterdam) have already announced 0-emission requirements for cruise-ships in harbour within 2025. Environmental legislation designed to reduce emissions across the maritime industry is hence placing higher demands for compliance upon ship owners and operators.Consequently, conventional ICE-based drivelines are currently being hybridized with batteries for reducing fuel consumption and the high local emission from ICE drivelines operating at part load. Liquefied Natural Gas (LNG) as a marine fuel constitutes a commercially available solution, which is almost eliminating local emissions (SOx, NOx, PM). Replacing diesel with LNG may reduce CO2-emissions by 15-20%, but this is not compliant with the 40 % GHG reduction ambitions for 2030.A first generation of pure battery-electric ships have been introduced in recent years. The largest to date is the 1 MW ferry boat Ampere which has been in operation since early 2015 in Norway. However, battery-electric ships have limited range, long charging time and require a high capacity grid connection. In that respect hydrogen and FC technology represents a promising option.FCs have been demonstrated for propulsion in several smaller slow speed vessels. PEMFCs and hydrogen as fuel is dominating and the power range is typically up to 100 kW. Lately, several initiatives have been taken for utilising FCs at higher power ranges and in high-speed vessels. Leading FC suppliers are now adapting MW-scale FC systems for maritime use. For wide deployment of FC technologies in maritime transport there is, however, still a series of specific challenges which needs to be addressed, including durability, system power density for high speed vessels, compatibility with maritime conditions (saline air, shock, rolling & vibration), high volume bunkering, regulations, codes and standards (incl. redundancy), and public acceptance.


Scope:The scope of this topic is the development and demonstration of at least 2 mid-size FC powered ships each with a minimum nominal FC system power of 400 kW, for inland/coastal freight or transportation of more than 100 passengers. A total minimum nominal FC system power of 1MW should be installed in the ships. The ships should be used on a daily basis in order to gain relevant operational experience. Refuelling (bunkering) to sustain the normal operational profile of the vessels is considered within the scope of this topic. Exploitation of synergies with refuelling infrastructure for other applications are considered however advantageous.

To assess different operational scenarios the ships shall operate at 2 different locations. The demonstrations should highlight the superior energy density and short refuelling time of hydrogen vs pure battery solutions. Batteries may however be included in a FC hybrid configuration to reduce fuel consumption and smoothen power demands on the FC unit. Retrofit of FC systems to replace conventional fossil-fuelled propulsion is also within the scope of the topic. An averaged minimum of 50 % renewable based hydrogen is required during the demonstration. Access cost of hydrogen compared to diesel is eligible.The construction of the demonstration vessels' hull, superstructure and other components unrelated to the FC propulsion system, as well as operational costs such as crew are not considered eligible costs.The project should address the following key issues:

Development of a FC system suitable for integration in new and existing ships, complying with maritime requirements regarding safety, redundancy and operational conditions ;Adaption and certification/approval of a new or retrofit of an existing vessel (i.e. the vessel cost is not eligible);Develop a suitable bunkering technology and process, based on existing HRS technology developed in previous FCH JU projects;Operation of the FC technology during test period and assessment of the technology in maritime conditions by the end-users including the related infrastructure;Transfer of fuel cell technology developed and applied in previous FCH 2 JU projects;Assessment of suitable business models for maritime transport applications, to foster further commercialization of technical solutions both on board the vessel and bunkering/refuelling;Monitoring during the operation the advantages in terms of emission reduction, noise reduction, improved image, availability, reliability and customer needs;Dissemination of the demonstration activities and achievements and support the EU member states promotion of clean vessel technology on the basis of this demonstration;The hydrogen infrastructure should be designed to provide hydrogen at the required quality, amounts and reliability to maintain normal operation of the ship. Technology and processes should be based on current proven hydrogen refuelling technology (e.g., for buses). The project should cooperate on ongoing activities with relevant organisations such as CESNI (European Committee for inland navigation vessels standards), IMO (International Maritime Organisation) and certification bodies. The project shall include an operational period of at least 18 months for each vessel. The proposal is expected to include a vessel OEM to ensure the transition to commercialization of the technology.TRL at the start of the project: 4-5.TRL at the end of the project: 6-7.Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected], which manages the European hydrogen safety reference database, HIAD.Test activities should collaborate and use the protocols developed by the JRC Harmonisation Roadmap (see section 3.2.B "Collaboration with JRC – Rolling Plan 2018"), in order to benchmark performance of components and allow for comparison across different projects.

The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.

A maximum of 1 project may be funded under this topic.Expected duration: 4 years


Expected Impact:This project is expected to develop and demonstrate hydrogen powered ships for medium sized inland and coastal freight and/or passenger transportation with daily normal missions, meeting customer needs. It is expected that the project provides a significant step towards implementation of FCs and hydrogen as fuel in maritime transport, by reducing costs while increasing the maturity, reliability and lifetime. The project will demonstrate the superior features of FC-based propulsion as compared to pure battery-powered vessels as well as the benefits from hybridising FCs with batteries for maritime transport applications. The demonstration shall also strengthen the European supply chain and reveal viable business models for inland/coastal maritime transport applications. It will, moreover, provide for increased visibility of the potential for FCH technologies as a means for de-carbonizing inland/coastal transportation.More specifically, the expected impacts include:

Successful demonstration of two FC-powered ships for inland/coastal applications before 2023;The performance targets should comply with the MAWP bus targets;Average availability of the ships of at least 90%;100% of on board power for auxiliaries and propulsion to be FC or FC battery hybrid;Vessel to be in service no less frequently than the conventional IC engine equivalent;Technical solutions meet all local safety requirements concerning gas storage and fuelling within the operational environment;Speed and performance no less than the normal IC engine based service;Systems design life of at least ten years (servicing allowed);Lessons learnt from implementing and operating FC ships, identification of bottlenecks – technical, organisational, structural, financial including RCS and formulation of recommendations on how to address these;Lowering CO2 and pollutant emissions from inland/coastal transport;Reduce noise in urban areas and increase public awareness;Contribute to significant further capital cost reduction of fuel cells and refuelling infrastructure. Type of action: Innovation ActionThe conditions related to this topic are provided in the chapter 3.3 and in the General Annexes to the Horizon 2020 Work Programme 2018-2020 which apply mutatis mutandis.


see less

Temáticas Obligatorias del proyecto: Temática principal: Electrochemistry batteries and fuel cells Boat and yacht construction Fuel cell technology Marine biotechnology incl. marine biofuels

Consortium characteristics

Scope European : The aid is European, you can apply to this line any company that is part of the European Community.
Tipo y tamaño de organizaciones: The necessary consortium design for the processing of this aid needs:

characteristics of the Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:While emission regulations have been enforced in road transport for more than 2 decades, maritime transport is still, largely, utilising heavy fuel oil and high sulphur containing diesel. In cities with major harbours, maritime transport is today contributing significantly to air pollution.Emission Control Areas (ECAs) are defined in the North and Baltic Sea (requiring the use of low-sulphur diesel) and along the North American coastline. ECA regulations have been proposed also for e.g., the Mediterranean Sea, and the coastlines of Australia, Japan and Norway. To comply with these more stringent local emission regulations, conventional propulsion systems based on internal combustion engines (ICEs) are subject to installing costly exhaust cleaning technologies.Moreover, European GHG emission targets for 2030 along with the ambitions of shifting especially freight from road to rail and sea underlines the urgency of introducing low and 0-emission solutions also for maritime transport. Some European cities (e.g., Amsterdam) have already announced 0-emission requirements for cruise-ships in harbour within 2025. Environmental legislation designed to reduce emissions across the maritime industry is hence placing higher demands for compliance upon ship owners and operators.Consequently, conventional ICE-based drivelines are currently being hybridized with batteries for reducing fuel consumption and the high local emission from ICE drivelines operating at part load.... Specific Challenge:While emission regulations have been enforced in road transport for more than 2 decades, maritime transport is still, largely, utilising heavy fuel oil and high sulphur containing diesel. In cities with major harbours, maritime transport is today contributing significantly to air pollution.Emission Control Areas (ECAs) are defined in the North and Baltic Sea (requiring the use of low-sulphur diesel) and along the North American coastline. ECA regulations have been proposed also for e.g., the Mediterranean Sea, and the coastlines of Australia, Japan and Norway. To comply with these more stringent local emission regulations, conventional propulsion systems based on internal combustion engines (ICEs) are subject to installing costly exhaust cleaning technologies.Moreover, European GHG emission targets for 2030 along with the ambitions of shifting especially freight from road to rail and sea underlines the urgency of introducing low and 0-emission solutions also for maritime transport. Some European cities (e.g., Amsterdam) have already announced 0-emission requirements for cruise-ships in harbour within 2025. Environmental legislation designed to reduce emissions across the maritime industry is hence placing higher demands for compliance upon ship owners and operators.Consequently, conventional ICE-based drivelines are currently being hybridized with batteries for reducing fuel consumption and the high local emission from ICE drivelines operating at part load. Liquefied Natural Gas (LNG) as a marine fuel constitutes a commercially available solution, which is almost eliminating local emissions (SOx, NOx, PM). Replacing diesel with LNG may reduce CO2-emissions by 15-20%, but this is not compliant with the 40 % GHG reduction ambitions for 2030.A first generation of pure battery-electric ships have been introduced in recent years. The largest to date is the 1 MW ferry boat Ampere which has been in operation since early 2015 in Norway. However, battery-electric ships have limited range, long charging time and require a high capacity grid connection. In that respect hydrogen and FC technology represents a promising option.FCs have been demonstrated for propulsion in several smaller slow speed vessels. PEMFCs and hydrogen as fuel is dominating and the power range is typically up to 100 kW. Lately, several initiatives have been taken for utilising FCs at higher power ranges and in high-speed vessels. Leading FC suppliers are now adapting MW-scale FC systems for maritime use. For wide deployment of FC technologies in maritime transport there is, however, still a series of specific challenges which needs to be addressed, including durability, system power density for high speed vessels, compatibility with maritime conditions (saline air, shock, rolling & vibration), high volume bunkering, regulations, codes and standards (incl. redundancy), and public acceptance.
Do you want examples? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Financial Chapters: The chapters of financing expenses for this line are:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: The processing of this aid requires a minimum technological level in the project of TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Characteristics of financing

Intensidad de la ayuda: Sólo fondo perdido + info
Lost Fund:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):
- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):
- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Guarantees:
does not require guarantees
No existen condiciones financieras para el beneficiario.

Additional information about the call

incentive effect: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
non -competitive competitive Very competitive
We do not know the total budget of the line
minimis: Esta línea de financiación NO considera una “ayuda de minimis”. You can consult the regulations here.

other advantages

SME seal: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2018-1 Demonstration of Fuel Cell applications for mid-size passenger ships or inland freight Specific Challenge:While emission regulations have been enforced in road transport for more than 2 decades, maritime transport is still, lar...
Sin info.
FCH-01-4-2020 Standard Sized FC module for Heavy Duty applications
en consorcio: Specific Challenge:Hydrogen is considered to play an essential role in future zero-emissions Heavy Duty (HD) mobility. There is a growing co...
Cerrada does 5 years | next call scheduled for the month of
FCH-01-8-2020 Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
en consorcio: Specific Challenge:Hydrogen compression remains a major bottleneck in the development of the refuelling infrastructure for H2 mobility. The...
Cerrada does 5 years | next call scheduled for the month of
FCH-01-5-2020 Demonstration of FC Coaches for regional passenger transport
en consorcio: Specific Challenge:For intercity and long-distance transport of passengers, coaches are used normally. About 20% of all registered buses for...
Cerrada does 5 years | next call scheduled for the month of
FCH-01-3-2020 Liquid Hydrogen on-board storage tanks
en consorcio: Specific Challenge:Commercial trucks, that are responsible for a quarter of road transport CO2 emissions, are particularly sensitive to H2 s...
Cerrada does 5 years | next call scheduled for the month of
FCH-01-1-2020 Development of hydrogen tanks for electric vehicle architectures
en consorcio: Specific Challenge:It is expected that vehicle architectures will change significantly in the next few years due to major trends in the auto...
Cerrada does 5 years | next call scheduled for the month of