Innovating Works
HORIZON-JTI-CLEANH2-2024-...
HORIZON-JTI-CLEANH2-2024-06-01: Large-scale Hydrogen Valley
Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industrial cluster, ports, airports, etc.) to specific national or international regions (e.g. cross border hydrogen corridors)[https://h2v.eu/media/7/download]. Hydrogen Valleys showcase the versatility of hydrogen by supplying several sectors in their geography such as mobility, industry and energy end uses. They are ecosystems or clusters where various final applications share a common hydrogen supply infrastructure. Across their geographic scope, Hydrogen Valleys cover multiple steps in the hydrogen value chain, ranging from hydrogen production (and often even dedicated renewables production) to the subsequent storage of hydrogen and distribution to off-takers via various modes of transport. Whilst most of the projects are in the EU, over the past years, Hydrogen Valleys have gone global, with new projects emerging worldwide. Mission Innovation has set a target of deploying 100 large-scale Hydrogen Valleys worldwide by 2030.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 17-04-2024.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Hace 8 mes(es) del cierre de la convocatoria y aún no tenemos información sobre los proyectos financiados, puede que esta información se publique pronto.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industrial cluster, ports, airports, etc.) to specific national or international regions (e.g. cross border hydrogen corridors)[https://h2v.eu/media/7/download]. Hydrogen Valleys showcase the versatility of hydrogen by supplying several sectors in their geography such as mobility, industry and energy end uses. They are ecosystems or clusters where various final applications share a common hydrogen supply infrastructure. Across their geographic scope, Hydrogen Valleys cover multiple steps in the hydrogen value chain, ranging from hydrogen production (and often even dedicated renewables production) to the subsequent storage of hydrogen and distribution to off-takers via various modes of transport. Whilst most of the projects are in the EU, over the past years, Hydrogen Valleys have gone global, with new projects emerging worldwide. Mission Innovation has set a target of deploying 100 large-scale Hydrogen Valleys worldwide by 2030.

Hydrogen Valleys are starting to form the first regional "hydrogen economies”. Already under the previous... ver más

Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industrial cluster, ports, airports, etc.) to specific national or international regions (e.g. cross border hydrogen corridors)[https://h2v.eu/media/7/download]. Hydrogen Valleys showcase the versatility of hydrogen by supplying several sectors in their geography such as mobility, industry and energy end uses. They are ecosystems or clusters where various final applications share a common hydrogen supply infrastructure. Across their geographic scope, Hydrogen Valleys cover multiple steps in the hydrogen value chain, ranging from hydrogen production (and often even dedicated renewables production) to the subsequent storage of hydrogen and distribution to off-takers via various modes of transport. Whilst most of the projects are in the EU, over the past years, Hydrogen Valleys have gone global, with new projects emerging worldwide. Mission Innovation has set a target of deploying 100 large-scale Hydrogen Valleys worldwide by 2030.

Hydrogen Valleys are starting to form the first regional "hydrogen economies”. Already under the previous programme, the Clean Hydrogen Partnership provided support to several Hydrogen Valleys across different locations in EU and of different sizes. It is however necessary to continue the accelerated deployment of Hydrogen Valleys as required by RePowerEU (with a target to double the number of hydrogen valleys by 2025) and to contribute to the objectives of the European Hydrogen Strategy, the EU Green Deal, and Fit for 55, and finally overcome common challenges linked to storage and distribution that may be territory specific. To do this it is necessary to have ‘testbed’ projects to act as first real-life cases for piloting global hydrogen markets. These projects need to be expanded in scale to demonstrate the full range of benefits from the use of hydrogen.

Project results are expected to contribute to all the following expected outcomes:

Anchorage of new demand for renewable hydrogen;Full integration into the broader energy ecosystem;Improvement of the perception of public towards hydrogen technologies, by ensuring a high visibility of the project and associated technologies to the local public and EU citizens;Emergence of new hydrogen valleys, through dissemination of learnings. Scope:The scope of this flagship topic is to develop and demonstrate a large-scale Hydrogen Valley. It could demonstrate a combination of technologies either in existing and/or new markets for clean hydrogen, especially when applications are used in symbiose with each other.

Proposals should demonstrate innovative approaches at system level: global and synergetic integration of hydrogen production (not restricted to electrolysis), distribution and end-use technologies. Proposals may also investigate interoperability, cause-effect stability of the overall system. Technologies demonstrated should be state-of the-art following technological developments previously funded by (but not limited to) the Clean Hydrogen Partnership.

Proposals should respond to the following requirements:

Production of at least 4000 tonnes of clean hydrogen per year using new hydrogen production capacity. [As defined in the SRIA of the Clean Hydrogen JU, clean hydrogen refers to renewable hydrogen. For the purpose of the demonstration addressed in the proposal it can be foreseen that in the early stages low carbon hydrogen could be used. However, the objective is to move to renewable or clean hydrogen as an ultimate objective in the project. Please refer to the paragraph Rationale for support of the section 3.7 of the SRIA of the Clean Hydrogen JU.], [Renewable hydrogen is hydrogen produced using renewable energy (Renewable Energy Directive 2018/2001/EU)] . Due to the large volumes of hydrogen involved, production plants may be distributed across the territories involved but should share common hydrogen supply infrastructure;At least two hydrogen applications from two different sectors should be part of the project, with clear focus on energy, industry and transport sectors.Monitoring and assessment activities including at least two years of operations;Provision of a clear, professional, and ambitious communication plan to ensure high visibility to the public including clear, measurable and ambitious KPIs;Demonstration of how hydrogen enables sector coupling, allows large integration of renewable energy[1] and provides an optimum techno economic solution for the decarbonisation of the activities in the geographical area being addressed;Reduction of the carbon emissions and impact on air quality related to the end-uses compared to incumbent technologies;Demonstration of how financial viability is expected to be reached after two years of operation. More broadly, proposals should:

Provide concrete project implementation plans with a clear calendar, defining the key phases of the implementation of the action (i.e., preparation of the specifications of equipment, manufacturing, permitting, deployment, and operation) and their duration;Provide a funding plan to ensure implementation of the project in synergies with other sources of funding. If no other sources of funding will be required, this should be stated clearly in the proposal, with a commitment from the partners to provide own funding. If additional sources of funding will be required, proposals should present a clear plan on which funding programmes at EU and/or national levels will be targeted [2]. In these cases, applicants should present a credible planning that includes forecasted funding programmes and their expected time of commitment;Clearly and coherently present the Hydrogen Valley (across the whole value chain including hydrogen production, distribution and storage and end uses) including the investments/actions supported directly by this topic as well as other investments/actions supported by other funding /financing sources [In the context of the topic other investments/actions refer to parts of the hydrogen valley which are necessary to respond to the topic requirements and to deliver a fully functional hydrogen valley but that are not supported with the funding of the Clean Hydrogen JU (e.g. hydrogen production plant supported with national funding or HRS supported with funding from the Connecting Europe Facility – Transport (CEF-T))] which are part of the hydrogen valley to be deployed and demonstrated in line with the topic requirements;Provide evidence of the commitment and role of public authorities (Member States, Regions and Cities) and of any other necessary stakeholders (e.g. hydrogen off-takers) at least in the form of Letters of Intent (LOI) should be provided. The practical implementation of these LOI will be followed during the Grant Agreement implementation;Provide a preliminary ‘hydrogen safety planning and management plan’ [In the context of this topic this refers to an early plan indicating how safety will be managed in the project https://www.clean-hydrogen.europa.eu/get-involved/european-hydrogen-safety-panel-0/reference-documents_en] at the project level, which will be further updated during project implementation;Ensure coverage of aspects such as replicability and cooperation between regions to facilitate transfer of knowledge across the EU with a focus on fostering replication of Hydrogen Valleys elsewhere;Demonstrate how synergies with existing hydrogen valleys will be ensured especially when it comes to skills and know-how exchange;Provide a scalability analysis that includes the broader energy system showing how the valley is expected to grow, where applicable;Highlight sustainability aspects in their description. The costs for the construction and commissioning phase of the hydrogen production technologies including connection (e.g connection to the electricity grid, electricity costs) may be funded while costs of renewable energy plants (e.g., PV or wind plant) or related costs for operation of the Hydrogen Valley (e.g., electricity for electrolysers) will not be funded.

This topic is expected to contribute to EU competitiveness and industrial leadership by supporting a European value chain for hydrogen and fuel cell systems and components.

It is expected that Guarantees of origin (GOs) will be used to prove the renewable character of the hydrogen that is produced/used. In this respect consortium may seek out the issuance/purchase and subsequent cancellation of GOs from the relevant Member State issuing body and if that is not yet available the consortium may proceed with the issuance and cancellation of non-governmental certificates (e.g CertifHy).

Proposals are expected to contribute towards the activities of the EU Mission on Climate- Neutral and Smart Cities, Mission Innovation 2.0 - Clean Hydrogen Mission and the H2V platform. Cooperation with entities from Clean Hydrogen Mission member countries, which are neither EU Member States nor Horizon Europe Associated countries, is encouraged (see section 2.2.6.7 International Cooperation).

For additional elements applicable to all topics please refer to section 2.2.3.2.

The TRL of the applications in the project should be at least 6 at the beginning of the project while the overall concept should target a TRL 8 at the end of the project - see General Annex B.

At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million – proposals requesting Clean Hydrogen JU contributions above this amount will not be evaluated.

Purchases of equipment, infrastructure or other assets used for the action must be declared as depreciation costs. However, for the following equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks): : hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses, costs may exceptionally be declared as full capitalised costs.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2024 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis.

[1] In line with the definitions provided in the Renewable Energy Directive 2018/2001/EU

[2] Including applications for funding planned, applications for funding submitted and funding awarded

ver menos

Temáticas Obligatorias del proyecto: Temática principal: ExpectedOutcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industrial cluster, ports, airports, etc.) to specific national or international regions (e.g. cross border hydrogen corridors)[https://h2v.eu/media/7/download]. Hydrogen Valleys showcase the versatility of hydrogen by supplying several sectors in their geography such as mobility, industry and energy end uses. They are ecosystems or clusters where various final applications share a common hydrogen supply infrastructure. Across their geographic scope, Hydrogen Valleys cover multiple steps in the hydrogen value chain, ranging from hydrogen production (and often even dedicated renewables production) to the subsequent storage of hydrogen and distribution to off-takers via various modes of transport. Whilst most of the projects are in the EU, over the past years, Hydrogen Valleys have gone global, with new projects emerging worldwide. Mission Innovation has set a target of deploying 100 large-scale Hydrogen Valleys worldwide by 2030.
Renewable Energies Industrial Clusters

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: *Presupuesto para cada participante en el proyecto
Requisitos técnicos: Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industrial cluster, ports, airports, etc.) to specific national or international regions (e.g. cross border hydrogen corridors)[https://h2v.eu/media/7/download]. Hydrogen Valleys showcase the versatility of hydrogen by supplying several sectors in their geography such as mobility, industry and energy end uses. They are ecosystems or clusters where various final applications share a common hydrogen supply infrastructure. Across their geographic scope, Hydrogen Valleys cover multiple steps in the hydrogen value chain, ranging from hydrogen production (and often even dedicated renewables production) to the subsequent storage of hydrogen and distribution to off-takers via various modes of transport. Whilst most of the projects are in the EU, over the past years, Hydrogen Valleys have gone global, with new projects emerging worldwide. Mission Innovation has set a target of deploying 100 large-scale Hydrogen Valleys worldwide by 2030. Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industrial cluster, ports, airports, etc.) to specific national or international regions (e.g. cross border hydrogen corridors)[https://h2v.eu/media/7/download]. Hydrogen Valleys showcase the versatility of hydrogen by supplying several sectors in their geography such as mobility, industry and energy end uses. They are ecosystems or clusters where various final applications share a common hydrogen supply infrastructure. Across their geographic scope, Hydrogen Valleys cover multiple steps in the hydrogen value chain, ranging from hydrogen production (and often even dedicated renewables production) to the subsequent storage of hydrogen and distribution to off-takers via various modes of transport. Whilst most of the projects are in the EU, over the past years, Hydrogen Valleys have gone global, with new projects emerging worldwide. Mission Innovation has set a target of deploying 100 large-scale Hydrogen Valleys worldwide by 2030.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 6:. Representa un paso importante en demostrar la madurez de una tecnología. Se construye un prototipo de alta fidelidad que aborda adecuadamente las cuestiones críticas de escala, que opera en un entorno relevante, y que debe ser a su vez una buena representación del entorno operativo real. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar desde un 70% hasta un 100%.
The funding rate for IA projects is 70 % for profit-making legal entities and 100 % for non-profit legal entities. The funding rate for IA projects is 70 % for profit-making legal entities and 100 % for non-profit legal entities.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.
Certificado DNSH: Los proyectos presentados a esta línea deben de certificarse para demostrar que no causan perjuicio al medio ambiente. + info

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
Deducción I+D+i:
0% 25% 50% 75% 100%
La empresa puede aplicar deducciones fiscales en I+D+i de los gastos del proyecto y reducir su impuesto de sociedades. + info
HORIZON-JTI-CLEANH2-2024 HORIZON-JTI-CLEANH2-2024 Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industr...
Sin info.
HORIZON-JTI-CLEANH2-2024-04-01 Portable fuel cells for backup power during natural disasters to power critical infrastructures
en consorcio: Expected Outcome:A critical infrastructure is defined as the body of systems, networks and assets that are so essential that their continued...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-05-01 Guidelines for sustainable-by-design systems across the hydrogen value chain
en consorcio: Expected Outcome:Safety and sustainability of FCH systems[1] are key requirements in the path towards a hydrogen economy, with important eff...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-04 Demonstration of innovative solutions for high-capacity, reliable, flexible, and sustainable hydrogen compression technologies in commercial applications
en consorcio: Expected Outcome:In order to accelerate the European green transition and achieve the targets set in the European Green Deal and the Europea...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-04-02 Improved characterisation, prediction and optimisation of flame stabilisation in high-pressure premixed hydrogen combustion at gas-turbine conditions
en consorcio: Expected Outcome:Hydrogen-fired gas turbines can potentially produce electric power (or mechanical work) at unmatched scale with zero carbon...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-05 Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications
en consorcio: Expected Outcome:Hydrogen Refueling Stations are an essential element of the future hydrogen mobility. For widespread hydrogen mobility to b...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-06-01 Large-scale Hydrogen Valley
en consorcio: Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industr...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-05-02 Development of non-fluorinated components for fuel cells and electrolysers
en consorcio: Expected Outcome:Green hydrogen is routinely cited as a major pillar of the clean energy transition by the European Commission, where fuel c...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-01 Investigation of microbial interaction for underground hydrogen porous media storage
en consorcio: Expected Outcome:In a fully developed hydrogen economy large-scale hydrogen storage is expected to play a crucial role to balance supply and...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-06-02 Small-scale Hydrogen Valley
en consorcio: Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industr...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-03 Next generation on-board storage solutions for hydrogen-powered maritime applications
en consorcio: Expected Outcome:The storage of hydrogen onboard maritime vessels represents a big challenge for the decarbonisation of the long-haul transp...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-01 Balance of plant components, architectures and operation strategies for improved PEMFC system efficiency and lifetime
en consorcio: Expected Outcome:To achieve the ambitious goal of the European Green Deal (at least 90% reduction in transport emissions by 2050 to be consi...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-04 Demonstration of hydrogen fuel cell-powered inland or short sea shipping
en consorcio: Expected Outcome:To date the shipping industry when compared to country-based emissions is the 6th largest emitter of CO2, with a total yiel...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-04 Development and implementation of online monitoring and diagnostic tools for electrolysers
en consorcio: Expected Outcome:The implementation of GW-scale hydrogen production through water electrolysis is being planned within the next decade. Coup...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Innovative proton conducting ceramic electrolysis cells and stacks for intermediate temperature hydrogen production
en consorcio: Expected Outcome:To realise the potential of hydrogen as an energy vector in the decarbonised economy it needs to be produced sustainably on...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-02 Scaling-up Balance of Plant components for efficient high power heavy duty applications
en consorcio: Expected Outcome:Development of highly durable 250-500 kW PEMFC stacks for heavy duty applications (aviation, maritime, on-/off-road transpo...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-02 Novel large-scale aboveground storage solutions for demand-optimised supply of hydrogen
en consorcio: Expected Outcome:Future hydrogen related infrastructure components need to store significant amounts of hydrogen and deliver it according to...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-03 Demonstration of hydrogen purification and separation systems for renewable hydrogen-containing streams in industrial applications
en consorcio: Expected Outcome:Lowering the cost of purification is crucial for making hydrogen a competitive option in various industries. Efficient tech...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-02 Advanced anion exchange membrane electrolysers for low-cost hydrogen production for high power range applications
en consorcio: Expected Outcome:Anion Exchange Membrane-water electrolyser (AEMEL) is a promising technology as it has the advantage of reducing hydrogen p...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-03 Development of innovative technologies for direct seawater electrolysis
en consorcio: Expected Outcome:Electrolytic hydrogen production and its various uses are leading to new types of energy and chemical industry systems whic...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-05 Hydrogen production and integration in energy-intensive or specialty chemical industries in a circular approach to maximise total process efficiency and substance utilisation
en consorcio: Expected Outcome:Energy Intensive and Specialty Chemical Industries consumes about a quarter of energy in Europe and significantly emits GHG...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration of innovative solutions for high-capacity, reliable, flexible, and sustainable hydrogen compression technologies in commercial applications
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Novel large-scale aboveground storage solutions for demand-optimised supply of hydrogen
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Portable fuel cells for backup power during natural disasters to power critical infrastructures
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Innovative proton conducting ceramic electrolysis cells and stacks for intermediate temperature hydrogen production
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Small-scale Hydrogen Valley
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Investigation of microbial interaction for underground hydrogen porous media storage
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration of hydrogen fuel cell-powered inland or short sea shipping
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Advanced anion exchange membrane electrolysers for low-cost hydrogen production for high power range applications
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Improved characterisation, prediction and optimisation of flame stabilisation in high-pressure premixed hydrogen combustion at gas-turbine conditions
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Development of innovative technologies for direct seawater electrolysis
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration of hydrogen purification and separation systems for renewable hydrogen-containing streams in industrial applications
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Development of non-fluorinated components for fuel cells and electrolysers
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Large-scale Hydrogen Valley
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Hydrogen production and integration in energy-intensive or specialty chemical industries in a circular approach to maximise total process efficiency and substance utilisation
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Guidelines for sustainable-by-design systems across the hydrogen value chain
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Scaling-up Balance of Plant components for efficient high power heavy duty applications
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Balance of plant components, architectures and operation strategies for improved PEMFC system efficiency and lifetime
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Next generation on-board storage solutions for hydrogen-powered maritime applications
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Development and implementation of online monitoring and diagnostic tools for electrolysers
en consorcio:
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de