Innovating Works
HORIZON-JTI-CLEANH2-2024-...
HORIZON-JTI-CLEANH2-2024-04-01: Portable fuel cells for backup power during natural disasters to power critical infrastructures
Expected Outcome:A critical infrastructure is defined as the body of systems, networks and assets that are so essential that their continued operation is required to ensure the security of a given nation, its economy, and the public's health and/or safety its operational safety even in extremities such as natural or human caused disasters (earthquakes, floods, volcanoes eruption, massive fires, as well as sabotage or assault resulting emergencies). As such, it is an essential element of society, with specific needs, whose functioning should be preserved, even under exceptional circumstances such as natural disasters.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 17-04-2024.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Hace más de 9 mes(es) del cierre y aún no tenemos información sobre los proyectos financiados, no parece que se vaya a publicar esta información.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

Expected Outcome:A critical infrastructure is defined as the body of systems, networks and assets that are so essential that their continued operation is required to ensure the security of a given nation, its economy, and the public's health and/or safety its operational safety even in extremities such as natural or human caused disasters (earthquakes, floods, volcanoes eruption, massive fires, as well as sabotage or assault resulting emergencies). As such, it is an essential element of society, with specific needs, whose functioning should be preserved, even under exceptional circumstances such as natural disasters.

Currently these needs can be realised by means of portable gensets and/or battery packs. Therefore, it should be ensured that critical infrastructures can be powered using clean alternative energy solutions such as multifuel capable fuel cells, able to reliably provide clean electricity for a sufficiently long timeframe and with highest efficiency.

The demanding operational conditions of systems targeted by the topic will act as a chance for fuel cells-based energy generating systems significantly rising their maturity level and allowing... ver más

Expected Outcome:A critical infrastructure is defined as the body of systems, networks and assets that are so essential that their continued operation is required to ensure the security of a given nation, its economy, and the public's health and/or safety its operational safety even in extremities such as natural or human caused disasters (earthquakes, floods, volcanoes eruption, massive fires, as well as sabotage or assault resulting emergencies). As such, it is an essential element of society, with specific needs, whose functioning should be preserved, even under exceptional circumstances such as natural disasters.

Currently these needs can be realised by means of portable gensets and/or battery packs. Therefore, it should be ensured that critical infrastructures can be powered using clean alternative energy solutions such as multifuel capable fuel cells, able to reliably provide clean electricity for a sufficiently long timeframe and with highest efficiency.

The demanding operational conditions of systems targeted by the topic will act as a chance for fuel cells-based energy generating systems significantly rising their maturity level and allowing for their further deployment in other areas of the hydrogen economy. Thus, it is necessary to find the means to use the portable robust and long-term autonomous systems based on fuel cells, which, in general, will be quickly integrated into the power system of a critical user and will provide backup power service in an uninterruptible manner. Moreover, as it should also be emphasised that these systems may be spread over, for example, in an area of a disaster affected city, and powering various facilities of different energy needs, the said approach will, as well, stem in the creation of advanced smart management algorithms for distributed microgrids.

Project results are expected to contribute to all of the following expected outcomes:

A certified, interoperation-ready (including datalink, powerlink and load prioritisation schemes), system of transportable power generator consisting of at least one generator module and a fuel tank brought in two separate containers;Solutions developed proven in conditions closely resembling these encountered during natural disasters and with real load profiles of exemplary units of critical infrastructure considered;Readiness towards commercialisation of the solution covering possible up-scaling in terms of both repeatable modules (up to min. 10), as well as, systems (min. 5);New services, and service models available for national and international rescue teams compliant with Integrated Situational Awareness and Analysis (ISAA);Breakthrough technology converting the nowadays diesel-based portable power generation to a novel fuel cell-based solution;Contributing to keep European leadership in disaster fighting. Project results are expected to contribute to the following target-adjusted objectives of the Clean Hydrogen JU SRIA:

Improve flexibility of systems in operation in extreme conditions of natural disasters;Prepare and demonstrate the next generation of fuel cells for stationary applications able to run under 100% H2 and other H2-rich fuels whilst keeping high performance;Support units using other hydrogen rich fuels of the likes of ammonia, methanol, chemical hydride or liquid organic hydrogen carriers;Support selected fuel cell demos for proving adequate uptime and availabilities. Furthermore, project results are expected to contribute to the KPIs for fuel cell technology for stationary sector of the Clean Hydrogen JU SRIA:

Availability of the system should be no less than 99%;Warm start time should be maximum 10 minutes since the connection;Cold start time should be maximum 90 minutes since the installation (cold start time for the whole system, which can be hybrid solution containing fuel cell and start up battery). Additional requirements to be competitive to already commercially available gensets and batteries:

The fuel cell system is expected to be efficient enough to allow at least 20% increase of the operation time at the same power/load profile as compared to genset of the same volume and weight of fuel;At least 100% increase of the longer operation time at the same power/load profile as the best battery-based portable containerised and commercially available solution using the same volume and weight. Scope:The topic focuses on the development and demonstration at an operational environment of a lightweight, robust, containerised and modular zero-emission transportable of at least 50 kWe fuel cell system to power critical infrastructures in the event of a natural disaster. The system should include all balance of plant components needed for operation

The demonstration campaign should include the transportation of the fuel cell system, its installation and test at end-user site for at least 2000 hours of cumulative operation epitomising the real load profiles.

The fuel cell system should:

be easily transported, installed and startedsustain vibrations and low (-30°C) and high (+50°C) ambient temperaturebe able to operate with air at low ambient pressure typical for mountain regions and other extreme environmental conditions.be compatible with the specific requirements and norms for transport and operation under relevant harsh environment conditions . Proposals should address the following:

Compact and lightweight containerised contraption including the fuel cell stack and balance of plant components, which can be transported by air, road and sea;Storage of enough fuel to sustain its operations during the emergency state (at least two weeks);Easy refuelling with fast exchange of the fuel storing modules;Simplified plug-and-play approach to minimise the interconnection and installation time;Ability of operation on green hydrogen and at least one other available or easily transportable fuel;Fulfillment of requirements (incl. certification aspects) needed for transport;Modular design with stackable and lifetime prognosis and degradation interoperable 10-50 kWe single modules;Include State of Health analysis at least after operation;Relevance to the respective standards of operation and safety; This project should continue the efforts concerning the development, certification and industrialization of fuel cells in other projects funded by such us, but not limited to, the Clean Hydrogen JU projects RoRePower and EVERYWH2ERE. The advancements in the current state of the art have to be clearly demonstrated e.g. by proving the interoperability of the modules designed, including the multifuel option, developing a quick refueling capability, as well as, design targeted for highly robust environments.

The consortium should include fuel cell system providers, partners with expertise on power engineering in distributed grids, standards and requirements needed for shipment for containerised operation-ready solutions and at least one end-user for on-site testing and demonstration performed by a tailored combination of hardware, software and virtual reality tools.

When defining the systems architecture proposals should consider that each of particular critical systems of interest is characterised with its own level of embedded uninterruptible power supplies during start-up and transitional operation phases (like switch to another fuel etc.), various energy consumption for balance of plant components, as well as, differing level of losses related to the lack of the continuity of operation.

Proposals should include the development of a strategy for the installation and operation of singular fuel cell systems in a (micro)grid utilising locally existing power supply units. The fuel cell system should be equipped with effective and highly central infrastructure independent tools for digital communication and localisation. In addition to location monitoring, the monitoring of such parameters as the amount of the fuel in the tank, the potential remaining service time (calculated real-time), and electrical parameters such as power, voltage of the system connection system, and the calculated real-time amount of supplied electricity should be considered.

This topic is expected to contribute to EU competitiveness and industrial leadership by supporting a European value chain for hydrogen and fuel cell systems and components.

Proposals should provide a preliminary draft on ‘hydrogen safety planning and management’ at the project level, which will be further updated during project implementation.

For additional elements applicable to all topics please refer to section 2.2.3.2.

Activities are expected to start at TRL 5 and achieve TRL 7 by the end of the project - see General Annex B.

At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million – proposals requesting Clean Hydrogen JU contributions above this amount will not be evaluated.

Purchases of equipment, infrastructure or other assets used for the action must be declared as depreciation costs. However, for the following equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks): fuel cell system, hydrogen storage and other components needed in the portable fuel cell system , costs may exceptionally be declared as full capitalised costs.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2024 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis.

ver menos

Temáticas Obligatorias del proyecto: Temática principal: The text outlines the objective of developing a zero-emission transportable fuel cell system for powering critical infrastructures during natural disasters. It emphasizes using clean energy solutions like fuel cells to ensure reliable and sustainable power supply. Projects funded aim to advance fuel cell technologies, support hydrogen-powered systems, and enhance fuel cell performance under extreme conditions.
Renewable Energies

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: *Presupuesto para cada participante en el proyecto
Requisitos técnicos: The expected impacts of the project include the development of a transportable fuel cell system for powering critical infrastructures during natural disasters. Key outcomes involve a certified and reliable power generator, readiness for commercialization, new services for rescue teams, and advancements in hydrogen fuel cell technology. The project aims to enhance flexibility, improve system performance, and support various clean hydrogen rich fuels while adhering to industry KPIs. The expected impacts of the project include the development of a transportable fuel cell system for powering critical infrastructures during natural disasters. Key outcomes involve a certified and reliable power generator, readiness for commercialization, new services for rescue teams, and advancements in hydrogen fuel cell technology. The project aims to enhance flexibility, improve system performance, and support various clean hydrogen rich fuels while adhering to industry KPIs.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 6:. Representa un paso importante en demostrar la madurez de una tecnología. Se construye un prototipo de alta fidelidad que aborda adecuadamente las cuestiones críticas de escala, que opera en un entorno relevante, y que debe ser a su vez una buena representación del entorno operativo real. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar desde un 70% hasta un 100%.
The funding rate for IA projects is 70 % for profit-making legal entities and 100 % for non-profit legal entities. The funding rate for IA projects is 70 % for profit-making legal entities and 100 % for non-profit legal entities.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.
Certificado DNSH: Los proyectos presentados a esta línea deben de certificarse para demostrar que no causan perjuicio al medio ambiente. + info

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
Deducción I+D+i:
0% 25% 50% 75% 100%
La empresa puede aplicar deducciones fiscales en I+D+i de los gastos del proyecto y reducir su impuesto de sociedades. + info
HORIZON-JTI-CLEANH2-2024 HORIZON-JTI-CLEANH2-2024 Expected Outcome:A critical infrastructure is defined as the body of systems, networks and assets that are so essential that their continued...
Sin info.
HORIZON-JTI-CLEANH2-2024-04-01 Portable fuel cells for backup power during natural disasters to power critical infrastructures
en consorcio: Expected Outcome:A critical infrastructure is defined as the body of systems, networks and assets that are so essential that their continued...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-05-01 Guidelines for sustainable-by-design systems across the hydrogen value chain
en consorcio: Expected Outcome:Safety and sustainability of FCH systems[1] are key requirements in the path towards a hydrogen economy, with important eff...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-04 Demonstration of innovative solutions for high-capacity, reliable, flexible, and sustainable hydrogen compression technologies in commercial applications
en consorcio: Expected Outcome:In order to accelerate the European green transition and achieve the targets set in the European Green Deal and the Europea...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-04-02 Improved characterisation, prediction and optimisation of flame stabilisation in high-pressure premixed hydrogen combustion at gas-turbine conditions
en consorcio: Expected Outcome:Hydrogen-fired gas turbines can potentially produce electric power (or mechanical work) at unmatched scale with zero carbon...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-05 Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications
en consorcio: Expected Outcome:Hydrogen Refueling Stations are an essential element of the future hydrogen mobility. For widespread hydrogen mobility to b...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-06-01 Large-scale Hydrogen Valley
en consorcio: Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industr...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-05-02 Development of non-fluorinated components for fuel cells and electrolysers
en consorcio: Expected Outcome:Green hydrogen is routinely cited as a major pillar of the clean energy transition by the European Commission, where fuel c...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-01 Investigation of microbial interaction for underground hydrogen porous media storage
en consorcio: Expected Outcome:In a fully developed hydrogen economy large-scale hydrogen storage is expected to play a crucial role to balance supply and...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-06-02 Small-scale Hydrogen Valley
en consorcio: Expected Outcome:Hydrogen Valleys are hydrogen ecosystems that cover a specific geography ranging from local or regional focus (e.g. industr...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-03 Next generation on-board storage solutions for hydrogen-powered maritime applications
en consorcio: Expected Outcome:The storage of hydrogen onboard maritime vessels represents a big challenge for the decarbonisation of the long-haul transp...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-01 Balance of plant components, architectures and operation strategies for improved PEMFC system efficiency and lifetime
en consorcio: Expected Outcome:To achieve the ambitious goal of the European Green Deal (at least 90% reduction in transport emissions by 2050 to be consi...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-04 Demonstration of hydrogen fuel cell-powered inland or short sea shipping
en consorcio: Expected Outcome:To date the shipping industry when compared to country-based emissions is the 6th largest emitter of CO2, with a total yiel...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-04 Development and implementation of online monitoring and diagnostic tools for electrolysers
en consorcio: Expected Outcome:The implementation of GW-scale hydrogen production through water electrolysis is being planned within the next decade. Coup...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Innovative proton conducting ceramic electrolysis cells and stacks for intermediate temperature hydrogen production
en consorcio: Expected Outcome:To realise the potential of hydrogen as an energy vector in the decarbonised economy it needs to be produced sustainably on...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-03-02 Scaling-up Balance of Plant components for efficient high power heavy duty applications
en consorcio: Expected Outcome:Development of highly durable 250-500 kW PEMFC stacks for heavy duty applications (aviation, maritime, on-/off-road transpo...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-02 Novel large-scale aboveground storage solutions for demand-optimised supply of hydrogen
en consorcio: Expected Outcome:Future hydrogen related infrastructure components need to store significant amounts of hydrogen and deliver it according to...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-02-03 Demonstration of hydrogen purification and separation systems for renewable hydrogen-containing streams in industrial applications
en consorcio: Expected Outcome:Lowering the cost of purification is crucial for making hydrogen a competitive option in various industries. Efficient tech...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-02 Advanced anion exchange membrane electrolysers for low-cost hydrogen production for high power range applications
en consorcio: Expected Outcome:Anion Exchange Membrane-water electrolyser (AEMEL) is a promising technology as it has the advantage of reducing hydrogen p...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-03 Development of innovative technologies for direct seawater electrolysis
en consorcio: Expected Outcome:Electrolytic hydrogen production and its various uses are leading to new types of energy and chemical industry systems whic...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-05 Hydrogen production and integration in energy-intensive or specialty chemical industries in a circular approach to maximise total process efficiency and substance utilisation
en consorcio: Expected Outcome:Energy Intensive and Specialty Chemical Industries consumes about a quarter of energy in Europe and significantly emits GHG...
Cerrada hace 9 meses | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration of innovative solutions for high-capacity, reliable, flexible, and sustainable hydrogen compression technologies in commercial applications
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Novel large-scale aboveground storage solutions for demand-optimised supply of hydrogen
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Portable fuel cells for backup power during natural disasters to power critical infrastructures
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Innovative proton conducting ceramic electrolysis cells and stacks for intermediate temperature hydrogen production
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Small-scale Hydrogen Valley
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Investigation of microbial interaction for underground hydrogen porous media storage
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration of hydrogen fuel cell-powered inland or short sea shipping
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Advanced anion exchange membrane electrolysers for low-cost hydrogen production for high power range applications
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Improved characterisation, prediction and optimisation of flame stabilisation in high-pressure premixed hydrogen combustion at gas-turbine conditions
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Development of innovative technologies for direct seawater electrolysis
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Demonstration of hydrogen purification and separation systems for renewable hydrogen-containing streams in industrial applications
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Development of non-fluorinated components for fuel cells and electrolysers
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Large-scale Hydrogen Valley
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Hydrogen production and integration in energy-intensive or specialty chemical industries in a circular approach to maximise total process efficiency and substance utilisation
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Guidelines for sustainable-by-design systems across the hydrogen value chain
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Scaling-up Balance of Plant components for efficient high power heavy duty applications
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Balance of plant components, architectures and operation strategies for improved PEMFC system efficiency and lifetime
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Next generation on-board storage solutions for hydrogen-powered maritime applications
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2024-01-01 Development and implementation of online monitoring and diagnostic tools for electrolysers
en consorcio:
Cerrada hace 55 años | Próxima convocatoria prevista para el mes de