Vision in color Molecular mechanism of the color visual system
"The retina of vertebrates contains two kinds of photoreceptor cells, the abundant rod cells, containing the rhodopsin pigment, and the much scarcer cone cells, with the blue, green and red cone pigments. Upon photoactivation, the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The retina of vertebrates contains two kinds of photoreceptor cells, the abundant rod cells, containing the rhodopsin pigment, and the much scarcer cone cells, with the blue, green and red cone pigments. Upon photoactivation, they interact and activate a specific heterotrimeric G protein, transducin, initiating the visual signalling phototransduction cascade. To date, little information about the interaction cone pigment-transducin is known.
The main goal of this project is to provide an overall picture that integrates in a coherent scheme the molecular basis of the interaction cone pigment-cone transducin following two approaches. In a first approach, Dr Ramon proposes to unravel the effect of cone degeneration associated mutations found in cone pigments, and transducin α subunit genes. To do that, these mutant proteins will be expressed (using eukaryotic or prokaryotic systems) and characterized by means of immunocytochemic and spectroscopic techniques.
On a second approach, Dr Ramon will study the interaction cone pigment-cone transducin by means of Surface Plasmon Resonance spectroscopy, providing the kinetic features of the biomolecular interactions and NMR spectrosocopy, by determining the conformation of cone transducin upon cone pigment binding
The collaboration of different groups with the host institution -which will allow short stays of the applicant in these laboratories- and their involvement in the development of this project will help to disseminate the results not only Europe, but worldwide.
Cone pigments have not been widely studied due to the scarcer amount in nature as compared with the rod pigment rhodopsin. most of the information available on cone pigment phototransduction is inferred or extrapolated from the rod system due to its similarities with rhodopsin, the prototypical representative of G protein coupled receptors. For this reason, the project herein proposed will represent an important advance in the visual diseases arena."