Fluid dynamics is an effective description that applies to a variety of physical systems such as the quark-gluon plasma produced in heavy-ion collisions at RHIC and LHC. Recently, it has become of foremost importance to develop a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto UniCHydro
Duración del proyecto: 50 meses
Fecha Inicio: 2020-04-17
Fecha Fin: 2024-07-10
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Fluid dynamics is an effective description that applies to a variety of physical systems such as the quark-gluon plasma produced in heavy-ion collisions at RHIC and LHC. Recently, it has become of foremost importance to develop a hydrodynamic theory that incorporates the effects of statistical thermal fluctuations of the background. With such a framework at hand, it would be possible to analytically access many physical situations where statistical fluctuations are dominant such as in turbulent flows and, for example, around the putative critical point in the phase space of Quantum Chromodynamics (QCD) at finite temperature and finite baryon density.
Another place where such considerations become relevant is in the physics of Quantum Chaos. Recent developments have shed new light into manifestations of many-body quantum chaos and have lead to the formulation of an effective theory for chaotic systems, albeit with a large number of degrees of freedom. Deviations from this limit seem to strongly indicate the necessity of including statistical fluctuations. Understanding these effects would help to classify the different universality classes of chaos to complete the survey of its manifestations.
The research proposal UniCHydro addresses several strategic aspects mentioned above related to universal properties of fluid dynamics and quantum chaos. The Experienced Researcher is an expert on Schwinger-Keldysh effective field theory techniques which constitute the starting point for developing this research proposal. The stimulating environments of MIT and the University of Florence will allow then the Experienced Researcher to acquire the new set of skills in analyzing statistical fluctuations and new competencies in quantum chaos which will be fundamental to enhance its career prospects and to become a mature and independent scientist.