Innovating Works

HELP

Financiado
Unique non-invasive pace-mapping system to identify subjects at risk of arrhythm...
Unique non-invasive pace-mapping system to identify subjects at risk of arrhythmic sudden death Sudden Sudden cardiac death (SCD) is a common cause of adult mortality in western countries, accounting in Europe for about 350 000 cases annually. Most SCDs are caused by ventricular arrhythmias generated from an arrhythmogenic ‘... Sudden Sudden cardiac death (SCD) is a common cause of adult mortality in western countries, accounting in Europe for about 350 000 cases annually. Most SCDs are caused by ventricular arrhythmias generated from an arrhythmogenic ‘substrate’ present within the heart. Paradoxically, despite the existence of efficient preventive therapies, the sole available predictor of SCD is a measure of cardiac contractility, an indirect metric, which applies only to a subset of patients. At present, most patients at risk cannot be identified pre-emptively to prevent sudden death. My aim is to develop a novel non-invasive body-surface mapping and pacing system, which will allow detection of cardiac signals related directly to the substrate responsible for lethal arrhythmias, for efficient SCD prediction. The unique approach proposed to achieve this objective will consist in: (1) combining electrocardiographic mapping and ultrasonic pacing technologies during cardiac signal acquisition from a high-density array of body surface electrodes; (2) characterizing micro-scale temporal, spectral and spatial features of substrate signals, at baseline and during pacing to unmask hidden signals; (3) establishing critical signal features specific of arrhythmogenic substrates using multi-parametric signal analysis on the body surface, based on unique electrophysiological data from explanted human hearts and from SCD survivors; (4) developing risk prediction scores from well-phenotyped groups of patients monitored by implanted devices. This project will constitute a new paradigm in clinical cardiac investigations and allow a major breakthrough in the prevention of premature arrhythmic deaths in the world. The capability of detecting and influencing cardiac electrical signals will also dramatically impact the management of populations suffering from other cardiac pathologies, enabling earlier diagnosis of heart disease, and better guidance to drug, interventional or preventive therapies. ver más
31/08/2027
UBx
2M€
Duración del proyecto: 59 meses Fecha Inicio: 2022-09-09
Fecha Fin: 2027-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-09-09
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2021-ADG: ERC ADVANCED GRANTS
Cerrada hace 3 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITE DE BORDEAUX No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5