Trust-ML: An Optimization-based Platform for Building Trust in Machine Learning...
Trust-ML: An Optimization-based Platform for Building Trust in Machine Learning Models used for Power Systems
Deep decarbonization of the energy sector will require massive penetration of stochastic renewable energy resources and an enormous amount of grid asset coordination; this represents a challenging paradigm for power system operato...
Deep decarbonization of the energy sector will require massive penetration of stochastic renewable energy resources and an enormous amount of grid asset coordination; this represents a challenging paradigm for power system operators. With its ability to learn in complex environments and provide predictive solutions on fast timescales, machine learning (ML) is posed to help overcome these challenges and dramatically transform power systems in coming decades. Emerging EU verification standards, however, will require that all ML and Reinforcement Learning (RL) used in safety critical applications be demonstrably trustworthy. In this project, we develop a unified framework, known as Trust-ML, for assessing the quantitative trustworthiness of the neural network models commonly used in power systems. Trust-ML uses a novel, convex optimization approach to assess ML trustworthiness across three key dimensions: performance, robustness, and interpretability. The approach is engineered to be scalable, and by design, it generates exact verification guarantees. Furthermore, Trust-ML is designed to meet the emerging needs of actual power systems. In particular, it can verify the performance of multi-agent RL systems in rigorous ways, and its relaxed counterpart can offer tractable, worst-case performance guarantees in the context of online learning. The resulting verification tools will be published as open-source software packages and shared widely with researchers and industry. This project will advance state-of-the-art methods across several interdisciplinary fields, it will help remove the barriers associated with machine learning deployment in power systems, and its outcomes will help push European power grids into competitive spaces. Coming from MIT with advanced training in power systems, the project PI, Samuel Chevalier, is characteristically well-suited to build Trust-ML, and his team of advisors represents a mixture of experts across power, optimization, and learning.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.