Efficient algorithms for sustainable machine learning
This project will develop and integrate the latest optimization and statistical advances into a new generation of resource-efficient algorithms for large-scale machine learning. State-of-the-art machine learning methods provide...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
REAL
Reliable and cost effective large scale machine learning
1M€
Cerrado
UTOPEST
Unified Theory of Efficient Optimization and Estimation
2M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project will develop and integrate the latest optimization and statistical advances into a new generation of resource-efficient algorithms for large-scale machine learning. State-of-the-art machine learning methods provide impressive results, opening new perspectives for science, technology, and society. However, they rely on massive computational resources to process huge manually annotated data-sets. The corresponding costs in terms of energy consumption and human efforts are not sustainable.
This project builds on the idea that improving efficiency is a key to scale the ambitions and applicability of machine learning. Achieving efficiency requires overcoming the traditional boundaries between statistics and computations, to develop new theory and algorithms.
Within a multidisciplinary approach, we will establish a new regularization theory of efficient machine learning.
We will develop models that incorporate budgeted computations, and numerical solutions with resources tailored to the statistically accuracy allowed by the data. Theoretical advances will provide the foundations for novel and sound algorithmic solutions. Close collaborations in diverse applied fields
will ensure that our research results and solutions will be apt and immediately applicable to real world scenarios.
The new algorithms developed in the project will contribute to boost the possibilities of Artificial Intelligence, modeling and decision making in a world of data with ever-increasing size and complexity.