TOSCP will proof-of-concept a radically new approach to climate prediction based on supermodelling. Climate prediction promises reliable information on climate and its extremes for the coming seasons and years. This information is...
ver más
CGL2011-25327
DESARROLLO Y EVALUACION DE TECNICAS DE PREDICCION POR CONJUN...
190K€
Cerrado
ASPIRE
Advancing Subseasonal PredIctions at Reduced computational E...
1M€
Cerrado
CGL2011-24458
MEJORA DE LAS PREDICCIONES DE TIEMPO SEVERO MEDITERRANEO POR...
244K€
Cerrado
TED2021-130056B-I00
NUEVOS ALGORITMOS DE CALIBRACION Y PROCESADO DE SEÑAL DE RAD...
185K€
Cerrado
SENTINEL
Design and Implementation of an Advanced Nonlinear and Non-G...
165K€
Cerrado
PTQ-17-09088
SKNOWCAST: PREDICCIÓN METEOROLÓGICA AVANZADA EN MONTAÑAS A C...
50K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
TOSCP will proof-of-concept a radically new approach to climate prediction based on supermodelling. Climate prediction promises reliable information on climate and its extremes for the coming seasons and years. This information is critical to providing climate services that are needed to build a resilient and sustainable society. Unfortunately, predicting climate in the extra-tropics remains a major challenge. Model systematic error is the major limitation. In the North Atlantic-European sector it leads to the strong under representation of the predictable dynamics, compared to unpredictable atmospheric weather patterns. The current approach to account for such errors is to perform a vast number of independent simulations with different models. This is computationally expensive and impractical in an operational context. The supermodel approach developed in the ERC-STERCP project is aptly suited to improve climate prediction. A supermodel combines a set of different models in runtime so that the individual model errors compensate so as to produce a superior model. The approach is extremely effective in mitigating long-standing model errors, and can control the ratio between predictable and unpredictable dynamics. TOSCP will reconfigure a supermodel developed in the STERCP project for climate prediction. The supermodel is based on three state-of-the-art climate models. We will develop new ensemble generation and data assimilation schemes. We aim to demonstrate that supermodel climate predictions greatly outperform the standard approach to climate prediction that is currently used for climate services. Dialogue with users and providers of climate
services will ensure the development of an optimal configuration of the new prediction system and its use in operational climate services. This will set the stage for the wider exploitation of supermodel climate prediction, leading to improved climate services for the benefit of society.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.