Design and Implementation of an Advanced Nonlinear and Non-Gaussian Data Assimil...
Design and Implementation of an Advanced Nonlinear and Non-Gaussian Data Assimilation Algorithm for Bounded Variables in Numerical Weather Prediciton Models.
Hazardous weather events affecting populated coastal are among the most devastating natural disasters in terms of mortality and economical losses due to their low predictability. Currently, the generation of useful predictions, re...
Hazardous weather events affecting populated coastal are among the most devastating natural disasters in terms of mortality and economical losses due to their low predictability. Currently, the generation of useful predictions, reliable and anticipated of hazardous weather events affecting populated coastal regions remains an ambitious challenge for the scientific community. Deficiencies in the accurate prediction of such events are tightly related with the initial value problem, which states that better the state of the atmosphere is estimated, the more accurate the forecasts. This problem is addressed by using advanced Data Assimilation (DA) techniques, which play an important role in current numerical weather prediction and is currently at the forefront of atmospheric and oceanic sciences research. However, although using the most current sophisticated DA algorithms, the estimation of the atmosphere is not accurate enough to improve the predictability of hazardous weather events, mainly because their linear and Gaussian underlying assumptions. The main aim of the present project is to go beyond the state of the art in DA by developing and implementing a novel and advanced DA technique that takes nonlinearities and non-Gaussianities into account, enabling us to to improve high-impact weather forecasts. The new DA will be tested in real cases in combination with a high-resolution atmospheric model to improve the predictability of several poorly forecasted Mediterranean Hurricanes. This novel technique will significantly improve global, regional, and climate forecasts. The applicant’s strong mathematical and theoretical skills in DA together with his broad experience running numerical weather models using HPC facilities will facilitate the achievement of the key goals of this proposal. This project will also expand the applicant’s experience, research competencies and professional networks, enhancing the development of his career as an independent researcher.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.